Semi-Supervised Classification with Graph Convolutional Networks

Thomas N. Kipf, Max Welling

UAmsterdam

Presenter: Jack Lanchantin https://qdata.github.io/deep2Read

2 Graph Convolutional Network

3 GCN For Semi-supervised Classification

- Model Setup and Training
- Experiments and Results

4 Conclusion

2 Graph Convolutional Network

3 GCN For Semi-supervised Classification

- Model Setup and Training
- Experiments and Results

4 Conclusion

- Undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with N nodes $v_i \in \mathcal{V}$, edges $(v_i, v_j) \in \mathcal{E}$
- Adjacency matrix $A \in \mathbb{R}^{N \times N}$ (binary or weighted)
- Degree matrix $D_{ii} = \sum_j A_{ij}$
- Laplacian: L = D A
- Normalized Laplacian: $L = I D^{-1/2}AD^{-1/2}$

Task: Semi-Supervised Classification

Thomas N. Kipf, Max Welling (University of Semi-Supervised Classification with Graph CoPresenter: Jack Lanchantin https://qdata.,

(4) (日本)

Label information is smoothed over the graph via some form of explicit graph-based regularization (e.g. graph Laplacian regularization in the loss):

$$\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_{\mathsf{reg}} \,, \tag{1}$$

$$\mathcal{L}_{\text{reg}} = \sum_{i,j} A_{ij} \| f(X_i) - f(X_j) \|^2 = f(X)^\top L f(X) \,. \tag{2}$$

- \mathcal{L}_0 : supervised loss w.r.t. the labeled part of the graph
- $f(\cdot)$: neural network
- X is a matrix of node feature vectors X_i

- The formulation of Eq. 1 relies on the assumption that connected nodes in the graph are likely to share the same label.
- This assumption might restrict modeling capacity, as graph edges need not necessarily encode node similarity, but could contain additional information.

- Encode the graph structure directly using a neural network model f(X, A) and train on a supervised target L₀ for all nodes with labels, thereby avoiding explicit graph-based regularization in the loss
- Conditioning $f(\cdot)$ on A will allow the model to distribute gradient information from the supervised loss \mathcal{L}_0 and will enable it to learn representations all nodes (with and without labels)

2 Graph Convolutional Network

3 GCN For Semi-supervised Classification

- Model Setup and Training
- Experiments and Results

4 Conclusion

GCNs consist of the following layer-wise propagation rule

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right).$$
(3)

- $\tilde{A} = A + I$ (adjacency matrix with added self-connections)
- $\tilde{D}_{ii} = \sum_j \tilde{A}_{ij}$
- $W^{(l)}$ is a layer-specific trainable weight matrix.
- $H^{(I)} \in \mathbb{R}^{N \times D}$ is the matrix of activations in the I^{th} layer; $H^{(0)} = X$.

In the following, we show that the form of this propagation is motivated via a first-order approximation of localized spectral filters on graphs

Spectral convolutions on graphs are defined as multiplication of a signal $x \in \mathbb{R}^N$ (scalar for every node) with a filter $g_\theta = \text{diag}(\theta)$ parameterized by $\theta \in \mathbb{R}^N$ in the Fourier domain:

$$g_{\theta} \star x = U g_{\theta} U^{\top} x \,, \tag{4}$$

- U is the matrix of eigenvectors of the normalized graph Laplacian $L = I D^{-\frac{1}{2}}AD^{-\frac{1}{2}} = U\Lambda U^{\top}$, with a diagonal matrix of its eigenvalues Λ , and $U^{\top}x$ being the graph Fourier transform of x
- We can view g_{θ} as a function of the eigenvalues of L, i.e. $g_{\theta}(\Lambda)$.

Spectral convolutions on graphs are defined as multiplication of a signal $x \in \mathbb{R}^N$ (scalar for every node) with a filter $g_\theta = \text{diag}(\theta)$ parameterized by $\theta \in \mathbb{R}^N$ in the Fourier domain:

$$g_{\theta} \star x = U g_{\theta} U^{\top} x \,, \tag{4}$$

- U is the matrix of eigenvectors of the normalized graph Laplacian $L = I D^{-\frac{1}{2}}AD^{-\frac{1}{2}} = U\Lambda U^{\top}$, with a diagonal matrix of its eigenvalues Λ , and $U^{\top}x$ being the graph Fourier transform of x
- We can view g_{θ} as a function of the eigenvalues of L, i.e. $g_{\theta}(\Lambda)$.

However, multiplication with the eigenvector matrix U is $\mathcal{O}(N^2)$

To circumvent this problem, $g_{\theta}(\Lambda)$ can be approximated by a truncated expansion in terms of Chebyshev polynomials $T_k(x)$ up to K^{th} order:

$$g_{\theta'}(\Lambda) \approx \sum_{k=0}^{K} \theta'_k T_k(\Lambda),$$
 (5)

 $\theta' \in \mathbb{R}^{K}$ is now a vector of Chebyshev coefficients. Chebyshev polynomials are recursively defined as $T_{k}(x) = 2xT_{k-1}(x) - T_{k-2}(x)$, with $T_{0}(x) = 1$ and $T_{1}(x) = x$.

Plugging $g_{\theta'}(\Lambda)$ back into our definition of a convolution of a signal x with a filter $g_{\theta'}$, and using the equality $(U\Lambda U^{\top})^k = U\Lambda^k U^{\top}$, we now have:

$$g_{\theta'} \star x \approx \sum_{k=0}^{K} \theta'_k T_k(\tilde{L}) x , \qquad (6)$$

where $\tilde{L} = L - I$

Plugging $g_{\theta'}(\Lambda)$ back into our definition of a convolution of a signal x with a filter $g_{\theta'}$, and using the equality $(U\Lambda U^{\top})^k = U\Lambda^k U^{\top}$, we now have:

$$g_{\theta'} \star x \approx \sum_{k=0}^{K} \theta'_k T_k(\tilde{L}) x, \qquad (6)$$

where $\tilde{L} = L - I$

- This expression is now K-localized since it is a K^{th} -order polynomial in the Laplacian, i.e. it depends only on nodes that are at maximum K steps away from the central node (K^{th} -order neighborhood).
- The complexity of Eq. 6 is $\mathcal{O}(|\mathcal{E}|)$, i.e. linear in the number of edges

$$g_{\theta'} \star x \approx \sum_{k=0}^{K} \theta'_k T_k(\tilde{L}) x, \qquad (6)$$

A neural network model based on graph convolutions can therefore be built by stacking multiple convolutional layers of the form of Eq. 6, each layer followed by a point-wise non-linearity.

Approximated Spectral Graph Convolution

$$g_{\theta'} \star x \approx \sum_{k=0}^{K} \theta'_k T_k(\tilde{L}) x, \qquad (6)$$

- Further simplify this by limiting K = 1, i.e. a function that is linear w.r.t. *L* and therefore a linear function on the graph Laplacian spectrum.
- Successive application of filters of this form then effectively convolve the *k*th-order neighborhood of a node, where *k* is the number of successive filtering operations or convolutional layers in the model.

Setting K = 1, Eq. 6 simplifies to:

$$g_{\theta'} \star x \approx \theta'_0 x + \theta'_1 (L - I) x$$
(7)
= $\theta'_0 x - \theta'_1 D^{-\frac{1}{2}} A D^{-\frac{1}{2}} x$, (8)

with two free parameters θ'_0 and θ'_1 .

We further constrain $\theta = \theta'_0 = -\theta'_1$ to minimize the number of operations (such as matrix multiplications) per layer:

$$g_{\theta} \star x \approx \theta \left(I + D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \right) x \,, \tag{9}$$

- $I + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ now has eigenvalues in the range [0, 2].
- Repeated application of this operator can therefore lead to numerical instabilities and exploding/vanishing gradients
- To alleviate this problem, a *renormalization trick* is used:

$$I + D^{-\frac{1}{2}}AD^{-\frac{1}{2}} \rightarrow \tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}$$

with $\tilde{A} = A + I$ and $\tilde{D}_{ii} = \sum_j \tilde{A}_{ij}$.

Final approximation for scalar inputs x and a vector of features θ :

$$g_{ heta} \star x \approx \theta \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} \right) x$$
 (10)

We can generalize this definition to a signal $X \in \mathbb{R}^{N \times C}$ with C input channels (i.e. a C-dimensional feature vector for every node) and F filters or feature maps as follows:

$$Z = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} X \Theta \,, \tag{11}$$

where $\Theta \in \mathbb{R}^{C \times F}$ is now a matrix of filter parameters and $Z \in \mathbb{R}^{N \times F}$ is the convolved signal matrix.

This filtering operation has complexity $\mathcal{O}(|\mathcal{E}|FC)$

2 Graph Convolutional Network

3 GCN For Semi-supervised Classification

- Model Setup and Training
- Experiments and Results

4 Conclusion

2 Graph Convolutional Network

3 GCN For Semi-supervised Classification

- Model Setup and Training
- Experiments and Results

4 Conclusion

• We first calculate $\hat{A} = \tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}$ in a pre-processing step.

• 2 layer network is then represented by:

$$Z = f(X, A) = \operatorname{softmax}\left(\hat{A} \operatorname{ReLU}\left(\hat{A} X W^{(0)}\right) W^{(1)}\right).$$
(12)

Here, $W^{(0)} \in \mathbb{R}^{C \times H}$ is an input-to-hidden weight matrix for a hidden layer with H feature maps. $W^{(1)} \in \mathbb{R}^{H \times F}$ is a hidden-to-output weight matrix. The softmax is applied row-wise.

We then evaluate the cross-entropy error over all labeled examples:

$$\mathcal{L} = -\sum_{I \in \mathcal{Y}_L} \sum_{f=1}^F Y_{If} \ln Z_{If} , \qquad (13)$$

where \mathcal{Y}_L is the set of node indices that have labels.

We then evaluate the cross-entropy error over all labeled examples:

$$\mathcal{L} = -\sum_{I \in \mathcal{Y}_L} \sum_{f=1}^F Y_{If} \ln Z_{If} , \qquad (13)$$

where \mathcal{Y}_L is the set of node indices that have labels.

Batch gradient descent is used on the full dataset for every training iteration. Using a sparse representation for A, memory requirement is $\mathcal{O}(|\mathcal{E}|)$, i.e. linear in the number of edges.

2 Graph Convolutional Network

3 GCN For Semi-supervised Classification

- Model Setup and Training
- Experiments and Results

4 Conclusion

Dataset	Туре	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

イロト イポト イヨト イヨト

æ

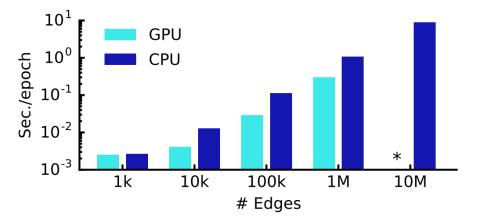
Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

イロト イヨト イヨト イヨト

3

Description	Propagation model	Citeseer	Cora	Pubmed
Chebyshev filter (Eq. 5) $K = 3$	$\sum_{k=0}^{K} T_k(\tilde{L}) X \Theta_k$	69.8	79.5	74.4
Chebyshev filter (Eq. 5) $K = 2$	$\sum_{k=0} I_k(L) A \Theta_k$	69.6	81.2	73.8
1 st -order model (Eq. 6)	$X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$	68.3	80.0	77.5
Single parameter (Eq. 7)	$(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})X\Theta$	69.3	79.2	77.4
Renormalization trick (Eq. 8)	$ ilde{D}^{-rac{1}{2}} ilde{A} ilde{D}^{-rac{1}{2}}X\Theta$	70.3	81.5	79.0
1 st -order term only	$D^{-rac{1}{2}}AD^{-rac{1}{2}}X\Theta$	68.7	80.5	77.8
Multi-layer perceptron	$X\Theta$	46.5	55.1	71.4

b) A = b



2 Graph Convolutional Network

3 GCN For Semi-supervised Classification

- Model Setup and Training
- Experiments and Results

4 Conclusion

- **Memory**: For large graphs that do not fit in GPU memory, training on CPU can still be a viable option.
- No Edge Features Allowed: Limited to undirected graphs (weighted or unweighted).
- Node Locality Implicitly assumed locality (dependence on the K^{th} -order neighborhood for a GCN with K layers) and equal importance of self-connections vs edges to neighboring nodes.

- By their approximations, this work was able to achieve a rapid speedup in graph convolutions (O(N²) → O(|E|)) with greater accuracy than previous methods
- The major drawbacks are the requirement to fit the entire graph into memory, working in the spectral domain, and only applicable to transductive tasks