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Motivation: Generative Models

Given true p(x), two ways to model data distribution:

Prescribed Probability Models: Specify log likelhood qθ(x),
maximize to find θ, indexing a family of possible distributions

Implicit Probabilistic Models:Map z from an easy to sample data
distribution, G : Z → X paramterized by θ
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Motivation: Generative Models

Deep Implicit vs Probabilistic Graphical Models

Deep Implicit Models: do not model structure in data

Probabilistic Graphical Models: can model prior knowledge about
data but can’t deal with images
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Deep Implicit Models

only a simulation of the generative process without explicit likelihood
evaluation

density qθ(x) can be highly intractable:
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Probabilistic Graphical Models

For example, Bayesian Networks

Bayes Net

Bayesian network joint distribution

a node is independent of its ancestors given its parents.
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This Paper: Graphical GAN

combine both Deep Implicit vs Probabilistic Graphical Models

Representation of variables: Bayesian Network

Probabilistic Modeling: Deep Implicit likelihood function

Structure:

Graphical Generative Adversarial NetworksPresenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 7 / 29

https://qdata.github.io/deep2Read


Incorporating Structure: Probabilistic Inference

Given x ,what z is likely to have produced it?

Bayes Net

Inference: In the water sprinkler network, and suppose we observe the fact
that the grass is wet. There are two possible causes for this: either it is
raining, or the sprinkler is on. Which is more likely?

Can be done in probabilistic graphical models
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Graphical GANs: Model Definition: PG (X ,Z )

Structured Data from a Bayes Network G directed acyclic graph

Can write PG (X ,Z ) as:

pG (X ,Z ) =

|Z |∏
i=1

p(zi |paG (zi ))

|Z |∏
j=1

p(xj |paG (xj)) (1)

easy to sample from using ancestral sampling

Parametrize the dependency functions as DNNs
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Graphical GANs

Two issues:

deep implicit likelihood functions: makes the inference of the latent
variables intractable

complex structures: which requires the inference and learning
algorithm to exploit the structural information explicitly
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Learning: Adversarial Learned Inference

GANs can’t do inference

BiGANs introduced to do inference

minθ,φD(q(X ,Z )||p(X ,Z )) (2)

where D is in the f-divergence family

cannot optimize directly: likelihood ratio is unknown given implicit
p(X, Z)
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Learning: Adversarial Learned Inference(BiGAN)
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Learning: Extending to Structured Data

Extend BiGAN ALI to Graphical GANs

Given PG (X ,Z ) and QG (X ,Z )

Discriminator that takes in both (X,Z)
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Learning with Structured Data: Expectation Propagation

factorization of p(X ,Z ) in terms of a set of factors FG

p(X ,Z ) ∝
∏

A∈FG
p(A)

Similarly for Q(X ,Z )

q(X ,Z ) ∝
∏

A∈FG
q(A)
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Learning with Structured Data: Expectation Propagation

EP iteratively minimizes a local divergence in terms of each factor
individually.

for factor A:
D(q(A)q(A))||D(p(A)p(A)) (3)

p(A) denotes the marginal distribution over the complementary (A) of
A.

Assume p(A) ≈ q(A)
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Learning with Structured Data: Expectation Propagation
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Learning with Structured Data: Expectation Propagation

average the divergences over all local factors

DA is the discriminator for the factor A and ψ denotes the parameters in all
discriminators
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Inference

Given x ,what z is likely to have produced it?

Consider structure of graphical model while doing Q(X ,Z )

Two ways:

Mean Field Posteriors
Inverse Factorization
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Mean Field Propagation

qH(X ,Z ) = q(X )qH(Z |X )

all of the dependency structures among the latent variables are
ignored

qH(Z |X ) =

|Z |∏
i=1

q(zi |X ) (4)

where the associated graph H has fully factorized structures.
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Inverse Factorizations

sample the latent variables given the observations efficiently by
inverting G step by step.

qH(Z |X ) =

|Z |∏
i=1

q(zi |∂G (zi ) ∩ z>i ) (5)

Given the structure of the approximate posterior: parameterize the
dependency functions as neural networks of similar sizes to those in
the generative models
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Training Algorithm
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Instance 1: GM-GAN

assume that the data consists of K mixtures and hence uses a mixture
of Gaussian prior

k ∼ Cat(π), h|k ∼ N(µk ,Σk), x |h = G (h)

π and Sigmaks are fixed as the uniform prior and identity matrices

Inverse factorization

h|x = E (x); q(k |h) =
πkN(h|µk ,Σk)

Σ′
kπ

′
kN(h|µ′k ,Σ′

k)
(6)

In the global baseline, a single network is used to discriminate the (x,
h, k) tuples.

local algorithm: two separate networks are introduced to discriminate
the (x, h) and (h, k) pairs, respectively.
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Instance 2: StateSpace-GAN

two types of latent variables: One is invariant across time h and the
other varies across time vt for time stamp t = 1, . . . ,T

use the mean-field recognition model as the approximate posterior:
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Instance 1: GMGAN Learns Discrete Structures

Assumption : that there exist discrete structures, e.g. classes and
attributes, in the data but the ground truth is unknown
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GMGAN Learns Discrete Structures
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GMGAN Learns Discrete Structures
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Instance 2: SSGAN Learns Temporal Structures

Graphical Generative Adversarial NetworksPresenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 27 / 29

https://qdata.github.io/deep2Read


Graphical Generative Adversarial NetworksPresenter: Arshdeep Sekhon https://qdata.github.io/deep2Read 28 / 29

https://qdata.github.io/deep2Read


Summary

utilize the underlying structural information of the data in an implicit
likelihood setting

learning interpretable representations and generating structured
samples

Not generalized

More Complicated Structures?
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