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Program Reidentification

Determine if an unknown program is variant of a known program.

Used to detect disguised malware or ramsomeware.
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Digital Code Signing is Useful

Figure: Program Properties Figure: Digital Signature

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 5 / 30

https://qdata.github.io/deep2Read


Digital Code Signing is Useful, but

Not always used, especially by open source software. (False Positives)

Malware can hijack a signed program. (False Negatives)
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Weakness of previous techniques

Digital code signing
Not always used.

Anti-virus
Malware-free attack, evasive malware, etc.

Sophisticated program watermarking techniques
Prohibitive computational costs.
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Proposed Solution

Program ⇒ Graph

Graph ⇒ Embedding.

Embedding ⇒ Identity Classification.
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Extract Graph from a Program

Possible choices:

Static analysis
E.g. Call graph of code blocks.

Complicated, local.

Dynamic analysis
E.g. System interaction graph.

Simpler, global (this paper)
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Extract Graphs from Dynamic Behavior
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Heterogeneous Graph

Three types of nodes:

Fork another program.

Read/Write a file.

Access to a network socket < IPAddr : Port >.

Solution: separate into three homogeneous graphs (meta-path).

Program - Program.

Program - File.

Program - Socket.
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Attentional Multi-Channel Graph Neural Network

Figure: Attentional Multi-Channel Graph Neural Network.
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Feature Extraction

For each node v in graph G , we extract a feature vector from

Connectivity features
X con
v = {ev ,1..., ev ,|V |}

Graph statistical features
X stat
v = {X s1

v ,X s2
v ,X s3

v ,X s4
v }

Degree centrality
Closeness centrality
Betweenness centrality
Clustering coefficient

How to combine as Xv? Concatenation?
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Graph Embedding Function

Given homogeneous graph (single channel)
G = (V ,E ,A), each V associated with feature X (|V | × (|V |+ 4)?)

Goal: to construct and learn a graph embedding function fG : G → hG

Proposed form: a three-layer Contextual Graph Encoder

h1 = ReLU((PX )W 0)
h2 = ReLU((Ph1)W 1)
h3 = ReLU((Ph2)W 2)

hG = hvt = h3

Each layer: ĥl = PROP(hl) = Phl (h0 = X )
hl+1 = PERCE (ĥl) = σ(ĥlW l) = ReLU(ĥlW l)

W l : shared trainable weight matrix for all entities at layer l .
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Propagation Function based on Random Walk

ĥl = PROP(hl)

= Phl

= D−1Ahl

= diag(A1)−1Ahl

(1)

A: Adjacency matrix; 1: all one vector.
D = diag(A1): degree matrix of A.
P = D−1A: propagation matrix shared in each layer.

Implication: weighted sum of the contexts’ current representation.
ĥl =

∑
u∈N(vt)

Puvth
l , F = {N(vt)}: receptive field

P ∈ RN×N : converged stationary distribution of the Markov process.
i th row: likelihood of diffusion from entity.
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Propagation Matrix Example

1
2

3

A =
0 1 0
1 0 0
1 0 0

D =
2 0 0
0 1 0
0 0 1

𝐷() =

1
2 0 0
0 1 0
0 0 1

𝑃 = 𝐷()𝐴 =

1
2 0 0
0 1 0
0 0 1

0 1 0
1 0 0
1 0 0

=
0

1
2

1
2

1 0 0
1 0 0

Figure: Propagation matrix example.
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Motivation

Treat three channels differently

Programs;

Files;

Sockets.

Example

Ransomware: active in files.

VPN: active in socket.
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Attention Weight

Attention weight ATT (hGi
) for channel i :

αi =
exp( σ(a[WahGi

||WahGk
]) )∑

k ′∈|C | exp(σ(a[WahGi
||WahGk′ ]))

Each channel i = 1, 2, ..., |C |
hGi

: graph embedding of a target channel
hGk

: graph embedding of other channels.
a: trainable attention vector.
Wa: trainable weight mapping (input features ⇒ hidden space)
||: concatenation
σ: nonlinear gating function.
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Joint Representation of All Channels

Joint representation of all channels:

hGJoin
=

|C |∑
i=1

ATT (hGi
) hGi
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Program Reidentification

Train a binary classifier for each known program.
Input: A claimed program event data.
Prediction: If the program behaves like the claimed one.

Logistic regression classifier.

Binary cross entropy loss.

Adam optimizer.

Early stopping with good accuracy.
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Experimental Setup

Dataset: Real-world system monitoring data of 3 Terabytes.
87 machines over 20 weeks.
300M events, 2K processes, 600K files, 18K sockets.
Behavior graph per program per day.

Baselines.

LR, SVM, XGB, MLP using raw features.
MLP: special case that PROP() is identity matrix.

Metrics: ACC, F-1 score, AUC, precision and recall.
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Result

Figure: Comparison of other classification methods.
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Conclusion

DeepRe-ID, an attentional graph neural network method to verify
the program identity based on behavior graph.

Can encode heterogeneous complex dependency.

Outperform all baseline methods.
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Discussions

Drawbacks:

No open dataset or open source code.

Require feature engineering: graph statistical features.

Require adjacency matrix.

Binary classification with many classes.

No interpretation of trained models.
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