
Deep Program Reidentification:
A Graph Neural Network Solution

Shen Wang et al.

University of Illinois at Chicago, NEC Labs America

To appear in SIAM International Conference on Data Mining (SDM’19)

Presenter: Weilin Xu
https://qdata.github.io/deep2Read

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 1 / 30

https://qdata.github.io/deep2Read
https://qdata.github.io/deep2Read


Outline

1 Introduction
Problem
Proposed Solution

2 Method
Program ⇒ Graph
Node Feature Extraction
Graph Embedding
Channel-Aware Attention
Binary Classification

3 Experiments

4 Conclusion

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 2 / 30

https://qdata.github.io/deep2Read


Outline

1 Introduction
Problem
Proposed Solution

2 Method
Program ⇒ Graph
Node Feature Extraction
Graph Embedding
Channel-Aware Attention
Binary Classification

3 Experiments

4 Conclusion

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 3 / 30

https://qdata.github.io/deep2Read


Program Reidentification

Determine if an unknown program is variant of a known program.

Used to detect disguised malware or ramsomeware.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 4 / 30

https://qdata.github.io/deep2Read


Digital Code Signing is Useful

Figure: Program Properties Figure: Digital Signature

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 5 / 30

https://qdata.github.io/deep2Read


Digital Code Signing is Useful, but

Not always used, especially by open source software. (False Positives)

Malware can hijack a signed program. (False Negatives)

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 6 / 30

https://qdata.github.io/deep2Read


Weakness of previous techniques

Digital code signing
Not always used.

Anti-virus
Malware-free attack, evasive malware, etc.

Sophisticated program watermarking techniques
Prohibitive computational costs.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 7 / 30

https://qdata.github.io/deep2Read


Outline

1 Introduction
Problem
Proposed Solution

2 Method
Program ⇒ Graph
Node Feature Extraction
Graph Embedding
Channel-Aware Attention
Binary Classification

3 Experiments

4 Conclusion

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 8 / 30

https://qdata.github.io/deep2Read


Proposed Solution

Program ⇒ Graph

Graph ⇒ Embedding.

Embedding ⇒ Identity Classification.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 9 / 30

https://qdata.github.io/deep2Read


Outline

1 Introduction
Problem
Proposed Solution

2 Method
Program ⇒ Graph
Node Feature Extraction
Graph Embedding
Channel-Aware Attention
Binary Classification

3 Experiments

4 Conclusion

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 10 / 30

https://qdata.github.io/deep2Read


Extract Graph from a Program

Possible choices:

Static analysis
E.g. Call graph of code blocks.

Complicated, local.

Dynamic analysis
E.g. System interaction graph.

Simpler, global (this paper)

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 11 / 30

https://qdata.github.io/deep2Read


Extract Graph from a Program

Possible choices:

Static analysis
E.g. Call graph of code blocks. Complicated, local.

Dynamic analysis
E.g. System interaction graph. Simpler, global (this paper)

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 11 / 30

https://qdata.github.io/deep2Read


Extract Graphs from Dynamic Behavior

Figure: Extract three graphs from program execution.Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 12 / 30

https://qdata.github.io/deep2Read


Heterogeneous Graph

Three types of nodes:

Fork another program.

Read/Write a file.

Access to a network socket < IPAddr : Port >.

Solution: separate into three homogeneous graphs (meta-path).

Program - Program.

Program - File.

Program - Socket.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 13 / 30

https://qdata.github.io/deep2Read


Attentional Multi-Channel Graph Neural Network

Figure: Attentional Multi-Channel Graph Neural Network.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 14 / 30

https://qdata.github.io/deep2Read


Outline

1 Introduction
Problem
Proposed Solution

2 Method
Program ⇒ Graph
Node Feature Extraction
Graph Embedding
Channel-Aware Attention
Binary Classification

3 Experiments

4 Conclusion

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 15 / 30

https://qdata.github.io/deep2Read


Feature Extraction

For each node v in graph G , we extract a feature vector from

Connectivity features
X con
v = {ev ,1..., ev ,|V |}

Graph statistical features
X stat
v = {X s1

v ,X s2
v ,X s3

v ,X s4
v }

Degree centrality
Closeness centrality
Betweenness centrality
Clustering coefficient

How to combine as Xv? Concatenation?

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 16 / 30

https://qdata.github.io/deep2Read


Feature Extraction

For each node v in graph G , we extract a feature vector from

Connectivity features
X con
v = {ev ,1..., ev ,|V |}

Graph statistical features
X stat
v = {X s1

v ,X s2
v ,X s3

v ,X s4
v }

Degree centrality
Closeness centrality
Betweenness centrality
Clustering coefficient

How to combine as Xv? Concatenation?

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 16 / 30

https://qdata.github.io/deep2Read


Outline

1 Introduction
Problem
Proposed Solution

2 Method
Program ⇒ Graph
Node Feature Extraction
Graph Embedding
Channel-Aware Attention
Binary Classification

3 Experiments

4 Conclusion

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 17 / 30

https://qdata.github.io/deep2Read


Graph Embedding Function

Given homogeneous graph (single channel)
G = (V ,E ,A), each V associated with feature X (|V | × (|V |+ 4)?)

Goal: to construct and learn a graph embedding function fG : G → hG

Proposed form: a three-layer Contextual Graph Encoder

h1 = ReLU((PX )W 0)
h2 = ReLU((Ph1)W 1)
h3 = ReLU((Ph2)W 2)

hG = hvt = h3

Each layer: ĥl = PROP(hl) = Phl (h0 = X )
hl+1 = PERCE (ĥl) = σ(ĥlW l) = ReLU(ĥlW l)

W l : shared trainable weight matrix for all entities at layer l .

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 18 / 30

https://qdata.github.io/deep2Read


Graph Embedding Function

Given homogeneous graph (single channel)
G = (V ,E ,A), each V associated with feature X (|V | × (|V |+ 4)?)

Goal: to construct and learn a graph embedding function fG : G → hG

Proposed form: a three-layer Contextual Graph Encoder

h1 = ReLU((PX )W 0)
h2 = ReLU((Ph1)W 1)
h3 = ReLU((Ph2)W 2)

hG = hvt = h3

Each layer: ĥl = PROP(hl) = Phl (h0 = X )
hl+1 = PERCE (ĥl) = σ(ĥlW l) = ReLU(ĥlW l)

W l : shared trainable weight matrix for all entities at layer l .

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 18 / 30

https://qdata.github.io/deep2Read


Graph Embedding Function

Given homogeneous graph (single channel)
G = (V ,E ,A), each V associated with feature X (|V | × (|V |+ 4)?)

Goal: to construct and learn a graph embedding function fG : G → hG

Proposed form: a three-layer Contextual Graph Encoder

h1 = ReLU((PX )W 0)
h2 = ReLU((Ph1)W 1)
h3 = ReLU((Ph2)W 2)

hG = hvt = h3

Each layer: ĥl = PROP(hl) = Phl (h0 = X )
hl+1 = PERCE (ĥl) = σ(ĥlW l) = ReLU(ĥlW l)

W l : shared trainable weight matrix for all entities at layer l .

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 18 / 30

https://qdata.github.io/deep2Read


Propagation Function based on Random Walk

ĥl = PROP(hl)

= Phl

= D−1Ahl

= diag(A1)−1Ahl

(1)

A: Adjacency matrix; 1: all one vector.
D = diag(A1): degree matrix of A.
P = D−1A: propagation matrix shared in each layer.

Implication: weighted sum of the contexts’ current representation.
ĥl =

∑
u∈N(vt)

Puvth
l , F = {N(vt)}: receptive field

P ∈ RN×N : converged stationary distribution of the Markov process.
i th row: likelihood of diffusion from entity.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 19 / 30

https://qdata.github.io/deep2Read


Propagation Function based on Random Walk

ĥl = PROP(hl)

= Phl

= D−1Ahl

= diag(A1)−1Ahl

(1)

A: Adjacency matrix; 1: all one vector.
D = diag(A1): degree matrix of A.
P = D−1A: propagation matrix shared in each layer.

Implication: weighted sum of the contexts’ current representation.
ĥl =

∑
u∈N(vt)

Puvth
l , F = {N(vt)}: receptive field

P ∈ RN×N : converged stationary distribution of the Markov process.
i th row: likelihood of diffusion from entity.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 19 / 30

https://qdata.github.io/deep2Read


Propagation Matrix Example

1
2

3

A =
0 1 0
1 0 0
1 0 0

D =
2 0 0
0 1 0
0 0 1

𝐷() =

1
2 0 0
0 1 0
0 0 1

𝑃 = 𝐷()𝐴 =

1
2 0 0
0 1 0
0 0 1

0 1 0
1 0 0
1 0 0

=
0

1
2

1
2

1 0 0
1 0 0

Figure: Propagation matrix example.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 20 / 30

https://qdata.github.io/deep2Read


Outline

1 Introduction
Problem
Proposed Solution

2 Method
Program ⇒ Graph
Node Feature Extraction
Graph Embedding
Channel-Aware Attention
Binary Classification

3 Experiments

4 Conclusion

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 21 / 30

https://qdata.github.io/deep2Read


Motivation

Treat three channels differently

Programs;

Files;

Sockets.

Example

Ransomware: active in files.

VPN: active in socket.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 22 / 30

https://qdata.github.io/deep2Read


Attention Weight

Attention weight ATT (hGi
) for channel i :

αi =
exp( σ(a[WahGi

||WahGk
]) )∑

k ′∈|C | exp(σ(a[WahGi
||WahGk′ ]))

Each channel i = 1, 2, ..., |C |
hGi

: graph embedding of a target channel
hGk

: graph embedding of other channels.
a: trainable attention vector.
Wa: trainable weight mapping (input features ⇒ hidden space)
||: concatenation
σ: nonlinear gating function.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 23 / 30

https://qdata.github.io/deep2Read


Joint Representation of All Channels

Joint representation of all channels:

hGJoin
=

|C |∑
i=1

ATT (hGi
) hGi

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 24 / 30

https://qdata.github.io/deep2Read


Outline

1 Introduction
Problem
Proposed Solution

2 Method
Program ⇒ Graph
Node Feature Extraction
Graph Embedding
Channel-Aware Attention
Binary Classification

3 Experiments

4 Conclusion

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 25 / 30

https://qdata.github.io/deep2Read


Program Reidentification

Train a binary classifier for each known program.
Input: A claimed program event data.
Prediction: If the program behaves like the claimed one.

Logistic regression classifier.

Binary cross entropy loss.

Adam optimizer.

Early stopping with good accuracy.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 26 / 30

https://qdata.github.io/deep2Read


Experimental Setup

Dataset: Real-world system monitoring data of 3 Terabytes.
87 machines over 20 weeks.
300M events, 2K processes, 600K files, 18K sockets.
Behavior graph per program per day.

Baselines.

LR, SVM, XGB, MLP using raw features.
MLP: special case that PROP() is identity matrix.

Metrics: ACC, F-1 score, AUC, precision and recall.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 27 / 30

https://qdata.github.io/deep2Read


Result

Figure: Comparison of other classification methods.
Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 28 / 30

https://qdata.github.io/deep2Read


Conclusion

DeepRe-ID, an attentional graph neural network method to verify
the program identity based on behavior graph.

Can encode heterogeneous complex dependency.

Outperform all baseline methods.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 29 / 30

https://qdata.github.io/deep2Read


Discussions

Drawbacks:

No open dataset or open source code.

Require feature engineering: graph statistical features.

Require adjacency matrix.

Binary classification with many classes.

No interpretation of trained models.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph Neural Network SolutionPresenter: Weilin Xu https://qdata.github.io/deep2Read 30 / 30

https://qdata.github.io/deep2Read

	Introduction
	Problem
	Proposed Solution

	Method
	Program  Graph
	Node Feature Extraction
	Graph Embedding
	Channel-Aware Attention
	Binary Classification

	Experiments
	Conclusion

