Deep Program Reidentification: A Graph Neural Network Solution

Shen Wang et al.

University of Illinois at Chicago, NEC Labs America

To appear in SIAM International Conference on Data Mining (SDM'19)

Presenter: Weilin Xu https://qdata.github.io/deep2Read

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph NeuPresenter: Weilin Xu https://qdata.githu

- 4 回 ト 4 三 ト 4 三 ト

Introduction

- Problem
- Proposed Solution

2 Method

- Program \Rightarrow Graph
- Node Feature Extraction
- Graph Embedding
- Channel-Aware Attention
- Binary Classification

Experiments

A B A A B A

Introduction Problem

Proposed Solution

2 Method

- Program \Rightarrow Graph
- Node Feature Extraction
- Graph Embedding
- Channel-Aware Attention
- Binary Classification

B Experiments

4 Conclusion

イロト イポト イヨト イヨト

- Determine if an unknown program is variant of a known program.
- Used to detect disguised malware or ramsomeware.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph NeuPresenter: Weilin Xu https://qdata.githu

イロト 不得 トイヨト イヨト

Digital Code Signing is Useful

StarCraft II.	exe Properties)					
Security	Details Previous Versions	_					
General	Compatibility Digital Signature	3					
*	StarCraft II.exe						
Type of file:	Application (.exe)						
Description:	StarCraft II						
Location:	C:\Program Files (x86)\StarCraft II						
Size:	3.35 MB (3,513,832 bytes)						
Size on disk:	3.35 MB (3,514,368 bytes)						
Created:	Saturday, February 1, 2014, 6:23:36 PM						
Modified:	Tuesday, May 23, 2017, 2:30:22 PM						
Accessed:	Tuesday, May 23, 2017, 2:30:20 PM						
Attributes:	Read-only Hidden Advanced						
	OK Cancel Ap	oply					

Figure: Program Properties

Figure: Digital Signature

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph NeuPresenter: Weilin Xu https://qdata.githu

Digital Code Signing is Useful, but

- Not always used, especially by open source software. (False Positives)
- Malware can hijack a signed program. (False Negatives)

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph NeuPresenter: Weilin Xu https://qdata.githu

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Digital code signing Not always used.
- Anti-virus

Malware-free attack, evasive malware, etc.

• Sophisticated program watermarking techniques Prohibitive computational costs.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph NeuPresenter: Weilin Xu https://qdata.githu

Introduction

- Problem
- Proposed Solution

Method

- Program \Rightarrow Graph
- Node Feature Extraction
- Graph Embedding
- Channel-Aware Attention
- Binary Classification

B Experiments

4 Conclusion

イロト イポト イヨト イヨト

- Program \Rightarrow Graph
- Graph \Rightarrow Embedding.
- Embedding \Rightarrow Identity Classification.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph NeuPresenter: Weilin Xu https://qdata.githu

(日)

Introduction

- Problem
- Proposed Solution

2 Method

• Program \Rightarrow Graph

- Node Feature Extraction
- Graph Embedding
- Channel-Aware Attention
- Binary Classification

B Experiments

4 Conclusion

A D N A B N A B N A B N

Possible choices:

- Static analysis
 - E.g. Call graph of code blocks.
- Dynamic analysis
 - E.g. System interaction graph.

イロト 不得下 イヨト イヨト

Possible choices:

- Static analysis
 - E.g. Call graph of code blocks. Complicated, local.
- Dynamic analysis
 - E.g. System interaction graph. Simpler, global (this paper)

Extract Graphs from Dynamic Behavior

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph NeuPresenter: Weilin Xu https://qdata.githu

Heterogeneous Graph

Three types of nodes:

- Fork another program.
- Read/Write a file.
- Access to a network **socket** < *IPAddr* : *Port* >.

Solution: separate into three homogeneous graphs (meta-path).

- Program Program.
- Program File.
- Program Socket.

イロト イヨト イヨト ・

Attentional Multi-Channel Graph Neural Network

Figure: Attentional Multi-Channel Graph Neural Network.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph NeuPresenter: Weilin Xu https://qdata.githu

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction

• Problem

Proposed Solution

Method

• Program \Rightarrow Graph

• Node Feature Extraction

- Graph Embedding
- Channel-Aware Attention
- Binary Classification

B Experiments

4 Conclusion

イロト イポト イヨト イヨト

Feature Extraction

For each node v in graph G, we extract a feature vector from

- Connectivity features $X_{v}^{con} = \{e_{v,1}..., e_{v,|V|}\}$
- Graph statistical features $X_v^{stat} = \{X_v^{s1}, X_v^{s2}, X_v^{s3}, X_v^{s4}\}$
 - Degree centrality
 - Closeness centrality
 - Betweenness centrality
 - Clustering coefficient

イロト 不得 トイヨト イヨト

Feature Extraction

For each node v in graph G, we extract a feature vector from

• Connectivity features

$$X_{v}^{con} = \{e_{v,1}..., e_{v,|V|}\}$$

- Graph statistical features $X_v^{stat} = \{X_v^{s1}, X_v^{s2}, X_v^{s3}, X_v^{s4}\}$
 - Degree centrality
 - Closeness centrality
 - Betweenness centrality
 - Clustering coefficient

How to combine as X_v ? Concatenation?

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph NeuPresenter: Weilin Xu https://qdata.githu

イロト 不得 トイラト イラト 一日

Introduction

Problem

Proposed Solution

2

Method

- Program \Rightarrow Graph
- Node Feature Extraction

Graph Embedding

- Channel-Aware Attention
- Binary Classification

B Experiments

4 Conclusion

イロト イポト イヨト イヨト

Graph Embedding Function

Given homogeneous graph (single channel) G = (V, E, A), each V associated with feature X ($|V| \times (|V| + 4)$?) **Goal**: to construct and learn a graph embedding function $f_G : G \to h_G$

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph NeuPresenter: Weilin Xu https://qdata.githu

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Graph Embedding Function

Given homogeneous graph (single channel) G = (V, E, A), each V associated with feature X ($|V| \times (|V| + 4)$?) **Goal**: to construct and learn a graph embedding function $f_G : G \to h_G$

Proposed form: a three-layer Contextual Graph Encoder

$$\begin{split} h^{1} &= ReLU((PX)W^{0}) \\ h^{2} &= ReLU((Ph^{1})W^{1}) \\ h^{3} &= ReLU((Ph^{2})W^{2}) \\ h_{G} &= h_{v_{t}} = h^{3} \end{split}$$

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph NeuPresenter: Weilin Xu https://qdata.githu

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Graph Embedding Function

Given homogeneous graph (single channel) G = (V, E, A), each V associated with feature X ($|V| \times (|V| + 4)$?) **Goal**: to construct and learn a graph embedding function $f_G : G \to h_G$

Proposed form: a three-layer Contextual Graph Encoder

$$\begin{split} h^{1} &= ReLU((PX)W^{0}) \\ h^{2} &= ReLU((Ph^{1})W^{1}) \\ h^{3} &= ReLU((Ph^{2})W^{2}) \\ h_{G} &= h_{v_{t}} = h^{3} \end{split}$$

Each layer:
$$\hat{h}' = PROP(h') = Ph'(h^0 = X)$$

 $h^{l+1} = PERCE(\hat{h}') = \sigma(\hat{h}'W') = ReLU(\hat{h}'W')$
 W' : shared trainable weight matrix for all entities at layer l .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Propagation Function based on Random Walk

$$\hat{h}' = PROP(h')$$

= Ph'
= $D^{-1}Ah'$
= $diag(A1)^{-1}Ah'$

(1)

- 本語 医 本 医 医 一 医

A: Adjacency matrix; **1**: all one vector. $D = diag(A\mathbf{1})$: degree matrix of A. $P = D^{-1}A$: propagation matrix shared in each layer.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph NeuPresenter: Weilin Xu https://qdata.githu

Propagation Function based on Random Walk

$$\begin{split} \hat{h}' &= PROP(h') \\ &= Ph' \\ &= D^{-1}Ah' \\ &= diag(A\mathbf{1})^{-1}Ah' \end{split}$$

A: Adjacency matrix; **1**: all one vector. $D = diag(A\mathbf{1})$: degree matrix of A. $P = D^{-1}A$: propagation matrix shared in each layer.

Implication: weighted sum of the contexts' current representation. $\hat{h}^{l} = \sum_{u \in N(v_t)} P_{uv_t} h^{l}, \qquad \mathcal{F} = \{N(v_t)\}$: receptive field $P \in \mathcal{R}^{N \times N}$: converged stationary distribution of the Markov process. i^{th} row: likelihood of diffusion from entity.

Propagation Matrix Example

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad D^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$P = D^{-1}A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Figure: Propagation matrix example.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph NeuPresenter: Weilin Xu https://qdata.githu

(日)

Introduction

Problem

Proposed Solution

2

Method

- Program \Rightarrow Graph
- Node Feature Extraction
- Graph Embedding

• Channel-Aware Attention

Binary Classification

B Experiments

4 Conclusion

A D N A B N A B N A B N

Treat three channels differently

- Programs;
- Files;
- Sockets.

Example

- Ransomware: active in files.
- VPN: active in socket.

イロト イボト イヨト イヨト

Attention Weight

Attention weight $ATT(h_{G_i})$ for channel *i*:

$$\alpha_i = \frac{\exp(\sigma(a[W_a h_{G_i} || W_a h_{G_k}]))}{\sum_{k' \in |C|} \exp(\sigma(a[W_a h_{G_i} || W_a h_{G_{k'}}]))}$$

Each channel i = 1, 2, ..., |C|

- h_{G_i} : graph embedding of a target channel
- h_{G_k} : graph embedding of other channels.
- a: trainable attention vector.
- W_a : trainable weight mapping (input features \Rightarrow hidden space)
- ||: concatenation
- $\sigma:$ nonlinear gating function.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Joint Representation of All Channels

Joint representation of all channels:

$$h_{G_{Join}} = \sum_{i=1}^{|C|} ATT(h_{G_i}) h_{G_i}$$

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph NeuPresenter: Weilin Xu https://qdata.githu

イロト 不得 トイヨト イヨト

Introduction

Problem

Proposed Solution

2

Method

- Program \Rightarrow Graph
- Node Feature Extraction
- Graph Embedding
- Channel-Aware Attention
- Binary Classification

Experiments

4 Conclusion

A D N A B N A B N A B N

Train a binary classifier for each known program. **Input**: A claimed program event data. **Prediction**: If the program behaves like the claimed one.

- Logistic regression classifier.
- Binary cross entropy loss.
- Adam optimizer.
- Early stopping with good accuracy.

- Dataset: Real-world system monitoring data of 3 Terabytes.
 87 machines over 20 weeks.
 300M events, 2K processes, 600K files, 18K sockets.
 Behavior graph per program per day.
- Baselines.
 - LR, SVM, XGB, MLP using raw features.
 - MLP: special case that *PROP()* is identity matrix.
- Metrics: ACC, F-1 score, AUC, precision and recall.

イロト イヨト イヨト ・

Result

Mathad	Settings	Evaluation Criteria				
Method		ACC	F-1	AUC	Precision	Recall
	fea-1	0.693	0.755	0.699	0.632	0.948
LR	fea-2	0.705	0.770	0.703	0.655	0.950
	fea-3	0.724	0.772	0.727	0.675	0.948
	fea-1	0.502	0.662	0.502	0.505	0.970
SVM	fea-2	0.795	0.778	0.725	0.701	0.935
	fea-3	0.504	0.652	0.504	0.505	0.975
	fea-1	0.775	0.802	0.776	0.732	0.930
XGB	fea-2	0.833	0.860	0.846	0.821	0.936
	fea-3	0.855	0.866	0.856	0.827	0.937
	fea-1	0.633	0.745	0.643	0.626	0.938
$MLP_{shallow}$	fea-2	0.775	0.808	0.779	0.724	0.932
	fea-3	0.778	0.808	0.780	0.726	0.932
	fea-1	0.633	0.743	0.653	0.625	0.945
MLP_{deep}	fea-2	0.801	0.830	0.805	0.769	0.921
	fea-3	0.815	0.831	0.816	0.778	0.923
$\mathbf{DeepRe-ID}_{shallow}$	/	0.905	0.929	0.908	0.905	0.933
$\mathbf{DeepRe-ID}_{deep}$	/	0.929	0.961	0.935	0.932	0.936

Figure: Comparison of other classification methods.

Shen Wang et al. (UIC, NEC Labs) Deep Program Reidentification: A Graph NeuPresenter: Weilin Xu https://qdata.githu

 ${\bf A}\equiv {\bf A}$

э.

- **DeepRe-ID**, an attentional graph neural network method to verify the program identity based on behavior graph.
- Can encode heterogeneous complex dependency.
- Outperform all baseline methods.

イロト 不得 トイヨト イヨト 二日

Drawbacks:

- No open dataset or open source code.
- Require feature engineering: graph statistical features.
- Require adjacency matrix.
- Binary classification with many classes.
- No interpretation of trained models.

< 日 > < 同 > < 回 > < 回 > .