Loss-Aware Binarization Of Deep Networks

Credit: Lu Hou, Quanming Yao, James T. Kwok

Hong Kong University of Science and Technology

Presenter: Ryan McCampbell https://qdata.github.io/deep2Read

2 Prior Work

4 Results

Credit: Lu Hou, Quanming Yao, James T. Kv Loss-Aware Binarization Of Deep Networks Presenter: Ryan McCampbell https://qdat

▶ < ∃ >

2 Prior Work

3 Loss-Aware Binarization

4 Results

5 Conclusion

Credit: Lu Hou, Quanming Yao, James T. Kv Loss-Aware Binarization Of Deep Networks Presenter: Ryan McCampbell https://qdat

A B A A B A

< 47 ▶

- Deep neural networks are expensive in space and time
 - Training
 - Inference
 - Weight storage
- Not good for embedded systems and mobile devices
- How can we make them more efficient?

- Train neural network then compress
- Train and compress network simultaneously
 - Tensor decomposition
 - Parameter quantization
 - Binarization

- Store only one bit for each weight value
- Significantly reduces storage
- Eliminates most multiplications in forward pass

2 Prior Work

3 Loss-Aware Binarization

4 Results

5 Conclusion

Credit: Lu Hou, Quanming Yao, James T. Kv Loss-Aware Binarization Of Deep Networks Presenter: Ryan McCampbell https://qdat

∃ ► < ∃ ►</p>

- (日)

- BinaryConnect Transform each weight to ± 1 with the sign function $\mathrm{Binarize}(w_l^t) = \mathrm{sign}(w_l^t)$
- Binary Weight Network also learn scaling parameter

Binarize
$$(w_l^t) = \alpha_l^t \mathbf{b}_l^t$$

 $\alpha_l^t = \frac{\|w_l^t\|_1}{n_l}, \ \mathbf{b}_l^t = \operatorname{sign}(w_l^t)$

- Use binarized weights for forward and backward pass
- Use full-precision weights in update, then re-binarize

- Use binarized weights for forward and backward pass
- Use full-precision weights in update, then re-binarize
- Problem: This doesn't consider effect of binarization on loss

2 Prior Work

4 Results

5 Conclusion

Credit: Lu Hou, Quanming Yao, James T. Kv Loss-Aware Binarization Of Deep Networks Presenter: Ryan McCampbell https://qdat

ヨト イヨト

< 行

• Proximal Newton algorithm: composite optimization problems where g may not be smooth

$$\min_{x} f(x) + g(x)$$

• Use second-order information: approximate Hessian H of f

$$x_{t+1} = \operatorname{argmin}_{x} \nabla f(x_t)^{\mathsf{T}} (x - x_t) + (x - x_t)^{\mathsf{T}} \mathsf{H}(x - x_t) + g(x)$$

Loss-Aware Binarization

• Minimize $\ell(\hat{w})$ given constraints

$$\hat{w}_{l} = \alpha_{l} \mathbf{b}_{l}, \ \alpha_{l} > 0, \ b_{l} \in \{\pm 1\}_{l}^{n}$$

• Define $I_C(\hat{w})$ as indicator function, 1 if constraints hold and ∞ otherwise.

$$\min \ell(\hat{w}) + I_C(\hat{w})$$

• Use proximal Newton method:

$$\min_{\hat{w}^{t}} \nabla \ell(\hat{w}^{t-1})^{\mathcal{T}} (\hat{w}^{t} - \hat{w}^{t-1}) + (\hat{w}^{t} - \hat{w}^{t-1})^{\mathcal{T}} \mathsf{D}^{t-1} (\hat{w}^{t} - \hat{w}^{t-1})$$

given the constraints, where \mathbf{D} is an approximate diagonal Hessian matrix.

• Let
$$\mathbf{d}_{l}^{t-1} = diag(\mathbf{D}_{l}^{t-1})$$

 $w_{l}^{t} = \hat{w}_{l}^{t-1} - \nabla_{l}\ell(\hat{w}^{t-1})/\mathbf{d}_{l}^{t-1}$
 $\alpha_{l}^{t} = \frac{\|\mathbf{d}_{l}^{t-1} \circ w_{l}^{t}\|_{1}}{\|\mathbf{d}_{l}^{t-1}\|_{1}}, \ \mathbf{b}_{l}^{t} = sign(w_{l}^{t})$

Each iteration: gradient descent with adaptive learning rate 1/d_l^{t-1}
Project to binary

Input: Minibatch $\{(\mathbf{x}_0^t, \mathbf{y}^t)\}$, current full-precision weights $\{\mathbf{w}_l^t\}$, first moment $\{\mathbf{m}_l^{t-1}\}$, second moment $\{\mathbf{v}_{l}^{t-1}\}$, and learning rate η^{t} .

- 1: Forward Propagation
- 2: **for** l = 1 to L **do** 3: $\alpha_l^t = \frac{\|\mathbf{d}_l^{t-1} \odot \mathbf{w}_l^t\|_1}{\|\mathbf{d}_l^{t-1}\|_1};$
- $\mathbf{b}_{t}^{t} = \operatorname{sign}(\mathbf{w}_{t}^{t});$ 4:
- 5: rescale the layer-*l* input: $\tilde{\mathbf{x}}_{l-1}^t = \alpha_l^t \mathbf{x}_{l-1}^t$;
- 6: compute \mathbf{z}_{l}^{t} with input $\tilde{\mathbf{x}}_{l-1}^{t}$ and binary weight \mathbf{b}_{l}^{t} ;
- apply batch-normalization and nonlinear activation to \mathbf{z}_{l}^{t} to obtain \mathbf{x}_{l}^{t} ; 7:
- 8: end for
- 9: compute the loss ℓ using \mathbf{x}_{L}^{t} and \mathbf{y}^{t} ;
- 10: Backward Propagation
- 11: initialize output layer's activation's gradient $\frac{\partial \ell}{\partial \mathbf{x}^t}$;
- 12: for l = L to 2 do
- compute $\frac{\partial \ell}{\partial \mathbf{x}_{l}^{t}}$ using $\frac{\partial \ell}{\partial \mathbf{x}_{l}^{t}}$, α_{l}^{t} and \mathbf{b}_{l}^{t} ; 13:
- 14: end for

・ 同下 ・ ヨト ・ ヨト

15: Update parameters using Adam

- 16: **for** l = 1 to L **do**
- 17: compute gradients $\nabla_l \ell(\hat{\mathbf{w}}^t)$ using $\frac{\partial \ell}{\partial \mathbf{x}_l^t}$ and \mathbf{x}_{l-1}^t ;
- 18: update first moment $\mathbf{m}_l^t = \beta_1 \mathbf{m}_l^{t-1} + (1 \beta_1) \nabla_l \ell(\hat{\mathbf{w}}^t);$
- 19: update second moment $\mathbf{v}_l^t = \beta_2 \mathbf{v}_{l+1}^{t-1} + (1-\beta_2) (\nabla_l \ell(\hat{\mathbf{w}}^t) \odot \nabla_l \ell(\hat{\mathbf{w}}^t));$
- 20: compute unbiased first moment $\hat{\mathbf{m}}_{l}^{t} = \mathbf{m}_{l}^{t}/(1-\beta_{1}^{t});$
- 21: compute unbiased second moment $\hat{\mathbf{v}}_l^t = \hat{\mathbf{v}}_l^t / (1 \beta_2^t);$
- 22: compute current curvature matrix $\mathbf{d}_{l}^{t} = \frac{1}{\eta^{t}} \left(\epsilon \mathbf{1} + \sqrt{\hat{\mathbf{v}}_{l}^{t}} \right);$
- 23: update full-precision weights $\mathbf{w}_l^{t+1} = \mathbf{w}_l^t \hat{\mathbf{m}}_l^t \oslash \mathbf{d}_l^t$;
- 24: update learning rate $\eta^{t+1} = \text{UpdateRule}(\eta^t, t+1);$
- 25: end for

- An additional optimization can be obtained by binarizing the activation function
- This reduces additions and multiplications to XNOR bitwise operations

2 Prior Work

3 Loss-Aware Binarization

4 Results

Credit: Lu Hou, Quanming Yao, James T. Kv Loss-Aware Binarization Of Deep Networks Presenter: Ryan McCampbell https://qdat

∃ ► < ∃ ►</p>

- (日)

Table 1: Test error rates ($\%$) for feedforward neural network models.					
		MNIST	CIFAR-10	SVHN	
(no binarization)	full-precision	1.190	11.900	2.277	
(binarize weights)	BinaryConnect	1.280	9.860	2.450	
	BWN	1.310	10.510	2.535	
	LAB	1.180	10.500	2.354	
(binarize weights and activations)	BNN	1.470	12.870	3.500	
	XNOR	1.530	12.620	3.435	
	LAB2	1.380	12.280	3.362	

Credit: Lu Hou, Quanming Yao, James T. Kv Loss-Aware Binarization Of Deep Networks Presenter: Ryan McCampbell https://qdat

イロト イヨト イヨト イヨト

3

Table 2: Test error rates (%) on SVHN, for CNNs with different numbers of filters. Number in brackets is the difference between the errors of the binarized scheme and the full-precision network.

	K = 16	K = 32	K = 64	K = 128
full-precision	2.738	2.585	2.277	2.146
BinaryConnect	3.200 (0.462)	2.777 (0.192)	2.450 (0.173)	2.315 (0.169)
BWN	3.119 (0.461)	2.743 (0.158)	2.535 (0.258)	2.319 (0.173)
LAB	3.050 (0.312)	2.742 (0.157)	2.354 (0.077)	2.200 (0.054)

イロト イボト イヨト イヨト

3

Table 5. Testing cross-endopy values of L5 TW.				
		War and Peace	Linux Kernel	
(no binarization)	full-precision	1.268	1.329	
(binarize weights)	BinaryConnect	2.942	3.532	
	BWN	1.313	1.307	
	LAB	1.291	1.305	
(binarize weights and activations)	BNN	3.050	3.624	
	XNOR	1.424	1.426	
	LAB2	1.376	1.409	

Table 3: Testing cross-entropy values of LSTM.

Credit: Lu Hou, Quanming Yao, James T. Kv Loss-Aware Binarization Of Deep Networks Presenter: Ryan McCampbell https://qdat

イロン イ理 とく ヨン イ ヨン

3

- 2 Prior Work
- 3 Loss-Aware Binarization

4 Results

Credit: Lu Hou, Quanming Yao, James T. Kv Loss-Aware Binarization Of Deep Networks Presenter: Ryan McCampbell https://qdat

∃ ► < ∃ ►</p>

- (日)

- This method has similar performance to the full-precision networks for many tasks
- Enables efficient storage and evaluation of deep neural networks
- However it is only slightly better in some cases than BWN
- Binarizing activations reduces performance