Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis Tal Ben-Nun and Torsten Hoefler ETH Zurich

> Presenter : Derrick Blakely https://qdata.github.io/deep2Read

> > March 6, 2019

Presenter : Derrick Blakely https://qdata.Demystifying Parallel and Distributed Deep L

March 6, 2019 1 / 34

Outline

Background

- 2 Parallel Computing and Communication
- Ostation (1998) Neural Network Concurrency
- Parameter Sharing and Consistency
 - 5 Frameworks

Outline

Background

- Parallel Computing and Communication
- 3 Neural Network Concurrency
- Parameter Sharing and Consistency
- 5 Frameworks
- Conclusion

Deep Learning is Using More Nodes

Presenter : Derrick Blakely https://qdata.Demystifying Parallel and Distributed Deep L

-

Background

More GPUs, More MPI

March 6, 2019 5 / 34

э

A (10) × (10) × (10)

Outline

Background

2 Parallel Computing and Communication

- 3 Neural Network Concurrency
- 4 Parameter Sharing and Consistency
- 5 Frameworks
- Conclusion

Parallel Computing Basics: Computation Graphs

- Critical path: causes the earliest possible completion time
- Depth D: time needed to execute critical path
- $T_1 = W$: sequential execution; same as total work
- $T_{\infty} = D$: with unlimited processors

• Average parallelism:
$$T_1/T_{\infty} = W/D$$

Parallel Computing Basics: Granularity

- Granularity: $G \approx T_{comp}/T_{comm}$
- Alternatively:

$$G = \frac{\min_{n \in V} w(n)}{\max_{e \in E} c(e)}$$

Parallel Computing Basics: Granularity

- Granularity: $G \approx T_{comp}/T_{comm}$
- Alternatively:

$$G = \frac{\min_{n \in V} w(n)}{\max_{e \in E} c(e)}$$

Parallel Computing Basics: Granularity

- Granularity: $G \approx T_{comp}/T_{comm}$
- Alternatively:

$$G = rac{\min_{n \in V} w(n)}{\max_{e \in E} c(e)}$$

Presenter : Derrick Blakely https://qdata.Demystifying Parallel and Distributed Deep L

A B b A B b

Goals

- Maximize parallelism
- Minimize communication and load imbalance
- Tradeoff: high parallelism, low communication
- Tradeoff: high load balance vs low communication
- High parallelism and high load balance are often compatible

Communication

Want to perform the following AllReduce:

$$y = x_1 \oplus x_2 \oplus \ldots \oplus x_{P-1} \oplus x_P$$

- P: num processing elements
- x_i: length-m vector of data items stored on a processing element
- γ : size of a data item (bytes)
- G: computation cost per byte
- L: network latency

Naive: Linear-Depth Reduction

$$T = \gamma m G(P-1) + L(P-1)$$

Average Parallelism: $T_1/T_{\infty} = W/D = (P-1)/(P-1) = 1$

Presenter : Derrick Blakely https://qdata.Demystifying Parallel and Distributed Deep L

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

Tree and Butterfly AllReduce

 $T = 2\gamma mG \log P + 2L \log P$

 $T = \gamma mG \log P + L \log P$

AllReduce

Ring:

$$T = 2\gamma m G(P-1)/P + 2L(P-1)$$

Reduce-Scatter-Gather:

$$T = 2\gamma mG(P-1)/P + 2L\log P$$

Lower bound:

$$T \geq 2\gamma m G(P-1)/P + L \log P$$

Presenter : Derrick Blakely https://qdata.Demystifying Parallel and Distributed Deep L

A D N A B N A B N A B N

Outline

1) Background

Parallel Computing and Communication

Ostation (1998) Neural Network Concurrency

Parameter Sharing and Consistency

5 Frameworks

Conclusion

Within-Layer Concurrency

Operator Type	Eval.	Work (W)	Depth (D)
Activation	y	O(NCHW)	<i>O</i> (1)
	∇w	O(NCHW)	<i>O</i> (1)
	∇x	O(NCHW)	O (1)
Fully Connected	y	$O(C_{out} \cdot C_{in} \cdot N)$	$O(\log C_{in})$
	∇w	$O(C_{in} \cdot N \cdot C_{out})$	$O(\log N)$
	∇x	$O(C_{in} \cdot C_{out} \cdot N)$	$O(\log C_{out})$
Convolution (Direct)	y	$O(N \cdot C_{out} \cdot C_{in} \cdot H' \cdot W' \cdot K_x \cdot K_y)$	$O(\log K_x + \log K_u + \log C_{in})$
	∇w	$O(N \cdot C_{out} \cdot C_{in} \cdot H' \cdot W' \cdot K_x \cdot K_u)$	$O(\log K_x + \log K_y + \log C_{in})$
	∇x	$O(N \cdot C_{out} \cdot C_{in} \cdot H \cdot W \cdot K_x \cdot K_u)$	$O(\log K_x + \log K_y + \log C_{in})$

 Table 4. Asymptotic Work-Depth Characteristics of DNN Operators

Data Parallelism

- Simple and efficient
- Must replicate models, possible GPU out of memory

Presenter : Derrick Blakely https://qdata.Demystifying Parallel and Distributed Deep L

э

< □ > < /□ >

Model Parallelism

- Conserve GPU memory
- Can work well with multiple GPUs on the same system
- Must share minibatch with every worker
- Back-prop requires all-to-all communication

Layer-by-layer Concurrency: Pipelining

- Avoid out of memory errors
- Sparse communication: GPUs only communicate with GPU in front of them
- Have to make sure there is overlap in computation
- Latency linear in number of processors

Graph Parallelism

Presenter : Derrick Blakely https://qdata.Demystifying Parallel and Distributed Deep L

2

A D N A B N A B N A B N

Outline

Background

- 2 Parallel Computing and Communication
- 3 Neural Network Concurrency
- Parameter Sharing and Consistency

5) Frameworks

Conclusion

Centralized Parameter Sharing: Parameter Server

•
$$T = 2P \frac{\gamma m G}{s} + 2L$$

- Ensures consistency
- "Stragglers" cause poor utilization

Asynchronous Parameter Server

- Better utilization, faster training
- Slow agents cause parameter divergence

Presenter : Derrick Blakely https://qdata.Demystifying Parallel and Distributed Deep L

March 6, 2019 23 / 34

Stale Synchronous Parameter Server

- Statistical performance vs hardware performance tradeoff
- Having a parameter server at all can bottleneck training

Decentralized Parameter Sharing

•
$$T = 2\gamma mG(P-1)/P + 2L\log P$$

- MPI or NCCL can automatically provide a good AllReduce
- Avoids parameter server bottleneck
- "Straggler" problem

Stale Synchronous Decentralized Parameter Sharing

Asynchronous Decentralized Parameter Sharing

Presenter : Derrick Blakely https://qdata.Demystifying Parallel and Distributed Deep L

э

Outline

Background

- 2 Parallel Computing and Communication
- 3 Neural Network Concurrency
- 4 Parameter Sharing and Consistency

5 Frameworks

Conclusion

< □ > < /□ >

Neural Net Frameworks

- TensorFlow: allows Parameter Server and AllReduce (MPI, NCCL, TCP/IP)
- PyTorch: AllReduce with MPI, NCCL, or gloo

Why not use Hadoop or Spark?

- Don't natively support GPU runtimes
- Require JVM–slow
- Designed for fault-tolerance, not speed
- Only support data-parallelism
- NNs have cyclic computation graphs (must revisit working sets)
- Must be synchronous
- TF or PyTorch better optimized for deep learning

Outline

1) Background

- 2 Parallel Computing and Communication
- 3 Neural Network Concurrency
- Parameter Sharing and Consistency
- 5 Frameworks

< □ > < /□ >

Ongoing Distributed ML Challenges

- Optmization and Theory
- Make algorithms more scalable
- Ø Better software for distributing ML
- Oevelop distributed ML systems
 - Consistency
 - Fault tolerance
 - Communication latency
 - Resource management

Up-and-Coming ML Topics

- Impact of compression and quantization?
- Challenges unique to networks with dynamic control flow?
- Best ways to implement utilize graph parallelism?
- Hierarchical tasks?
- Automated architecture searches?

References

Ben-Nun, Tal, and Torsten Hoefler. "Demystifying parallel and distributed deep learning: An in-depth concurrency analysis." arXiv preprint arXiv:1802.09941 (2018).

