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Motivation

What kind of geometric structure found in images/text/etc exploited
by CNNs

How to use this universal property on non euclidean domains
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Examples of non euclidean domains
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Some Distinctions?

Domain Structure/Data on a Domain

Fixed Graph vs Varying Graph

Known Graph vs Unknown Graph
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Basics of Euclidean CNNs

Translational Invariance

Compositionality deformation stability: localization in space,1

constant features O(1) and O(n) computation time

1“each feature extraction in our network is followed by an additional layer which
performs a local averaging and a sub-sampling, reducing the resolution of the feature
map. This layer introduces a certain level of invariance to distortions and translations.”Geometric Deep Learning on Graphs and Manifoldshttps://qdata.github.io/deep2Read 6 / 41
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Euclidean CNNs

defined on euclidean domains or on discrete grids

Grids have the above mentioned properties

inducitve bias for images
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Main Idea

Extending pooling and conv to non euclidean domains
(graphs/manifolds)

assume stationarity and compositionality (find appropriate operators
for filtering and pooling)

How to make them fast?
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Types of Non-Euclidean CNNs

Two types of non euclidean CNNs

Spectral Domain

Spatial Domain
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Graph Theory

Weighted undirected graph G with vertices V = {1, ..., n},
edges E ⊂ V × V

edge weights wij ≥ 0 for (i , j) ∈ E

Functions over the vertices L2(V ) = {f : V → R}
Vectors in hilbert space: f = (f 1, . . . , fn), encoding value of function
at every node

Hilbert space with inner product < f , g >L2(V )= Σi∈V figi = f Tg
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Graph Laplacian

Find geometry of a structure: measure smoothness of a function

The Laplacian measures what you could call the curvature or stress of
the field.

Unnormalized Laplacian: ∆fi = Σi ,jwij(fi − fj)

difference between f and its local average: fiΣijwij − Σijwij fj

Represented as a positive semi-definite n × n,

∆ = D −W where

W = (wij) and D = diag(Σj 6=iwij)
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Smoothness of function

Dirichlet Energy: a measure of how much the function f changes over
M ⊂ RN

||f ||2G =
1

2
Σijwij(fi − fj)

2 = f T∆f (1)

measures the smoothness of f (how fast it changes locally)

Geometric Deep Learning on Graphs and Manifoldshttps://qdata.github.io/deep2Read 12 / 41

https://qdata.github.io/deep2Read


Riemannian manifolds
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Manifold Laplacian
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Orthogonal bases on graphs

find class of functions smooth

Find the smoothest orthogonal basis

minφ1Edir (ψ1) s.t.||φ1|| = 1 (2)

similarly find subsequent eigen vectors orthogonal to the previos ones
in order of smoothness

Can be reoformulated as:

minφ∈Rn×ntrace(φT∆φ) s.t.φTφ = I (3)

laplacian eigen vectors are the solutions to this equation
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Laplacian Eigen Vectors

∆ = φΛφT (4)
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Laplacian Eigen Vectors for Graphs and Manifolds
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Fourier Analysis on Euclidean Spaces

related to the solution of dirichlet
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Fourier Analysis on graphs
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Euclidean Conv Basics
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Convolution theorem in graphs
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Convolution theorem in graphs
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Spectral Convolution

defined by analogy:
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Issues with Spectral Graph CNN

Not shift-invariant! (G has no circulant structure)

Filter coefficients depend on basis φ1, ..., φn
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Spectral CNN

Convolution expressed in the spectral domain g = φWφT f

W is n × n diagonal matrix of learnable spectral filter coefficients

Geometric Deep Learning on Graphs and Manifoldshttps://qdata.github.io/deep2Read 25 / 41

https://qdata.github.io/deep2Read


Issues

Filters are basis-dependent: does not generalize across graphs

O(n) parameters per layer

O(n2) computation of forward and inverse Fourier transforms

No guarantee of spatial localization of filters: free to choose multiplier
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Localization and Smoothness
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Examples
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Graph Pooling

Produce a sequence of coarsened graphs

Max or average pooling of collapsed vertices

Binary tree arrangement of node indices
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Limitations

Poor generalization across non-isometric domains unless kernels are
localized

Spectral kernels are isotropic due to rotation invariance of the
Laplacian

Only undirected graphs, as symmetry of the Laplacian matrix is
assumed
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Spatial GNNs
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Spatial and Spectral link

higher the power of r, richer the filter class

but tradeoff between test time and power of filters

Edge decoration

Vertex decoration

Interaction Nets
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What does GNN look like on a euclidean grid

Graph is a regular lattice

gives isotropic filters

less expressive than a conventional ConvNet

no notion of up and down
conv nets have implicit ordering implies edge knowledge

For example, local correlation among pixels /translation, easy to
reorder shuffled patches of iimages
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Geodesic Polar Coordiantes

Aim: Develop conv like operator for manifolds
But not translation invariant : different patches very different at
different points of maifold
Use some local coordinates
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Convolution on Manifolds
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Convolution on Manifolds
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Correspondence I: Local Feature Learning
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Correspondence II: Labelling

Groundtruth correspondenceπ : X → Y from query shape X to some
reference shape Y (discretized with n vertices)

Correspondence = label each query vertex x as reference vertex y

Net output at x after softmax layer= probabilitydistributiononY
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Correspondence Results
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Matrix Completion
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Summary

Spectral vs Spatial Convolution on Non Euclidean Domains: Graphs
and Manifolds

Spectral Better if Graph assumed to be similar across samples

Leveraging low dimension structure at tangent planes in manifolds for
spectral convolution

Applications
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