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Quantified Metrics
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Setting up the Objective Function

Goal: maximize each fi reward function

Wmax = max width of any rule in either ND or DL
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Objective Function

Find R ⊆ ND ×DL× C to maximize:

M∑
i=1

λi fi (R)

subject to:

size(R) ≤ ε1
maxwidth(R) ≤ ε2
numdsets(R) ≤ ε3

λi : non-negative weight set by user or found via CV.
εi : set by user.
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Objective Function Optimization

Optimization is NP-Hard; instance of Budgeted Maximum Coverage
Problem

Use “approximate local search” algo (Lee at al. 2009) for
1/5-approximation

Gist: select a rule that maximizes the objective; repeatedly perform
delete or exchange operations to optimize the solution set
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Outline

1 Background

2 Related Work

3 The MUSE Framework

4 Results

5 Conclusion
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Datasets

1 Bail outcomes (released on bail or not) for 86K defendants

2 High school performance (graduated on time or not) for 21K students

3 Depression diagnoses (depressed or not) 33K patients
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Baselines

Locally Interpretable Model agnostic Explanations (LIME) (Ribeiro,
Singh, and Guestrin 2016)

Interpretable Decision Sets (IDS) (Lakkaraju, Bach, and Leskovec
2016)

Bayesian Decision Lists (BDL) (Letham et al. 2015)
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Shortcomings

Can’t work on image classifiers; needs to be combined with feature
extraction from middle layers of NN

What if we value some features more than others?

Asks end users to do a lot of work

create D,NL, and DL sets
Set objective function weights
Set ε constraint values

Is 85% tolerable in high stakes situations?

Possibly encourages bad practice

Might be better as an analysis tool for ML developers
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Lessons Learned

Potentially good idea to build an interpretable approximation of your
model using logic rules

Valuable for sanity checking or helping others use model

More work is needed on interpretable black box algorithms
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