Spectral Graph Theory and Graph CNN

https://qdata.github.io/deep2Read

Presenter : Ji Gao

(University of Virginia)

Spectral Graph Theory and Graph CNN

Presenter : Ji Gao

1/28

Outline

1 Graph Laplacian

- Definitions
- Why Laplacian?
- Graph Fourier Transform

2 Spectral Neural Network

3 Fast Spectral Filtering

4 Reference

Outline

Graph Laplacian

Definitions

- Why Laplacian?
- Graph Fourier Transform

2 Spectral Neural Network

3 Fast Spectral Filtering

4 Reference

Graph

A graph G = (V, E), where V = 1, 2..N is the set of Vertices and $E \subseteq V \times V$.

(Vertex) Weighted Graph

A weighted graph G = (V, E, W), where V = 1, 2..N is the set of Vertices, $E \subseteq V \times V$, $W : V \rightarrow R$.

A (10) < A (10) </p>

Degree

The degree d(v) of a vertex v is the number of vertices in G that are adjacent to v.

Adjacency Matrix

Adjacency matrix A of the graph G is a $n \times n$ matrix that

 $\mathcal{A}_{ij} = egin{cases} 1 & (i,j) \in E \ 0 & ext{Otherwise} \end{cases}$

(Unnormalized) Graph Laplacian

Graph Laplacian L = diag(d) - A, which

$$\mathcal{L}_{ij} = egin{cases} d_i & i=j \ -1 & i
eq j\&(i,j)\in E \ 0 & ext{Otherwise} \end{cases}$$

(University of Virginia)

Spectral Graph Theory and Graph CNN

Presenter : Ji Gao

/⊐ ▶ ∢

6 / 28

Outline

1 Graph Laplacian

- Definitions
- Why Laplacian?
- Graph Fourier Transform
- 2 Spectral Neural Network
- 3 Fast Spectral Filtering

4 Reference

Why Laplacian?

Laplacian

For function f, Laplacian operator $\Delta f = abla \cdot abla f$

- Laplacian represents the divergence of the gradient.
- It's a coordinate-free operator!
- In physics, if a electromagnetic field is defined by a electrostatic potential function ϕ , then $\Delta \phi$ gives the charge distribution in the field.

Eigenfunction of Laplacian Operator

Eigenfunction of Laplacian in (0, 1)

Suppose f is the eigenfunction of the Laplacian:

$$\Delta f + \lambda f = 0, f(0) = f(1) = 0$$

$$\Delta f = \frac{\partial^2 f}{\partial x^2} = -\lambda f$$

The only non-trivial solution of the Laplacian is

$$f_n(x) = C\sin(n\pi x), n \in N$$

- f_n is the Fourier sine series.
- f_n together forms an orthonormal basis of the space $L^2(0,1)$
- Theorem: For any L²(Ω) space where Ω is a reasonably smooth domain, there exists an orthonormal family of eigenfunctions of Δ that forms an orthonormal basis of the space.

(University of Virginia)

Outline

1 Graph Laplacian

- Definitions
- Why Laplacian?
- Graph Fourier Transform

2 Spectral Neural Network

3 Fast Spectral Filtering

4 Reference

Graph Laplacian

۲

Graph Laplacian L = D - A

- Suppose f is a function from vertex to \mathcal{R} .
- f can be represented by a vector $(f_1, f_2...f_n)$ with size n.
- Therefore, $[Lf]_i = d_i \sum_j A_{ij}f_j = \sum_j A_{ij}(f_i f_j)$
- Calculating the difference on the value of a vertex to its neighbors!

$$f^{\mathsf{T}} L f = \sum_{\langle i,j \rangle \in \mathsf{E}} (f_i - f_j)^2$$

11 / 28

Graph Laplacian

$$L = D - A$$
$$f^{T}Lf = \sum_{\langle i,j \rangle \in E} (f_{i} - f_{j})^{2}$$

- Symmetric real matrix \longrightarrow Real eigenvalues
- \bullet Positive semidefinite \longrightarrow Non-negative eigenvalues
- First eigenvalue is 0 with eigenvector $\{1,1,1...1\}$

•
$$0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$$

Graph Fourier transform

• The eigenvector of graph Laplacian matrix can be used as a orthonormal basis of the Hilbert space.

13/28

Graph Spectral Filtering

Filters can be used to form a convolutional layer

Presenter : Ji Gao

Spectral Networks and Deep Locally Connected Networks on graphs

Joan Bruna, Wojciech Zaremba, Arthur Szlam, Yann Lecun

- CNN is powerful. Extend CNN to general graphs.
- 1. Use hierarchical clustering
- 2. Use spectrum of graph laplacian to learn convolutional layers
- Efficient: Number of parameters is independent of input size

Spatial CNN use Hierarchical clustering

- Form a multi-scale clustering
- The k-th layer has d_k clusters
- The k-th layer has fk filters

Convolutional Layer

For $j = 1..f_k$,

$$x_{k+1,j} = L_k h(\sum_{i=1}^{f_{k-1}} F_{k,i,j} x_{k,i})$$

 F_k, i, j is a $d_{k-1} \times d_{k-1}$ sparse matrix. L_k is a pooling operation.

• Clusters are pre-defined by hierarchical clustering.

Spectral Convolution

Suppose V is the eigenvectors of L. Input: x_k , size $n \times f_{k-1}$ Without spatial subsampling:

$$x_{k+1,j} = h(U\sum_{i=1}^{f_{k-1}} F_{k,i,j}U^T x_{k,i})$$

 $F_{k,i,j}$ is a diagonal weight matrix.

• Only use top d eigenvectors to reduce cost.

• Subsample MNIST to 400 points

• Baseline: Nearest Neighbor (4.11% Error rate)

Figure 3: Subsampled MNIST examples.

Table 1: Classification results on MNIST subsampled on 400 random locations, for different architectures. FCV stands for a fully connected layer with N outputs, LRPA foncts the locally connected construction from Section 2.3 with N outputs, MPN as a max-pooling layer with N outputs. and SPN stands for the spectral layer from Section 3.2.

method	Parameters	Error
Nearest Neighbors	N/A	4.11
400-FC800-FC50-10	$3.6 \cdot 10^{5}$	1.8
400-LRF1600-MP800-10	$7.2 \cdot 10^{4}$	1.8
400-LRF3200-MP800-LRF800-MP400-10	$1.6 \cdot 10^{5}$	1.3
$400-SP1600-10 (d_1 = 300, q = n)$	$3.2 \cdot 10^{3}$	2.6
400 -SP1600-10 ($d_1 = 300, q = 32$)	$1.6 \cdot 10^{3}$	2.3
400 -SP4800-10 ($d_1 = 300, q = 20$)	$5 \cdot 10^{3}$	1.8

< □ > < 同 > < 三 > <

Experiment 1: Subsampled MNIST

Figure 4: Clusters obtained with the agglomerative clustering. (a) Clusters corresponding to the finest scale k = 1, (b) clusters for k = 3.

Figure 5: Examples of Eigenfunctions of the Graph Laplacian v2, v20.

(University of Virginia)	Spectral Graph Theory and Graph CNN	Presenter : li Gao 19	/ 28
(onitersie) of themal	opectial orapin theory and orapin citit	110501101 51 600 157	

글 🕨 🔺 글 🕨

э

Experiment 2: Sphere MNIST

- Project MNIST to sphere
- Uniformly or Randomly

Figure 7: Examples of some MNIST digits on the sphere.

method	Parameters	Error
Nearest Neighbors	N/A	19
4096-FC2048-FC512-9	107	5.6
4096-LRF4620-MP2000-FC300-9	$8 \cdot 10^{5}$	6
4096-LRF4620-MP2000-LRF500-MP250-9	$2 \cdot 10^{5}$	6.5
4096-SP32K-MP3000-FC300-9 ($d_1 = 2048, q = n$)	$9 \cdot 10^{5}$	7
4096-SP32K-MP3000-FC300-9 ($d_1 = 2048, q = 64$)	$9 \cdot 10^{5}$	6

Table 2:	Classification	results or	the	MNIST-sphere	dataset	generated	using	partial	rotations,	for
different	architectures									

Table 3: Classification results on the MNIST-sphere dataset generated using uniformly random rotations, for different architectures

method	Parameters	Error
Nearest Neighbors	NA	80
4096-FC2048-FC512-9	107	52
4096-LRF4620-MP2000-FC300-9	$8 \cdot 10^5$	61
4096-LRF4620-MP2000-LRF500-MP250-9	$2 \cdot 10^5$	63
4096-SP32K-MP3000-FC300-9 ($d_1 = 2048, q = n$)	$9 \cdot 10^5$	56
4096-SP32K-MP3000-FC300-9 ($d_1 = 2048, q = 64$)	$9 \cdot 10^5$	50

Image: A matrix and a matrix

э

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Michaël Defferrard, Xavier Bresson, Pierre Vandergheynst

- Improve previous spectral CNN
- Main Contributions:
 - Strictly localized filters
 - Low computational complexity
 - Efficient pooling method
 - Multiple experiment on different datatypes

graph filter

$$y = U^T g(\Lambda) U x$$

Where U is the eigenvector of L and Λ is the diagonal matrix of all eigenvalues of L

- Naive approach is to learn $g(\Lambda) = diag(\theta)$ directly.
- Limitations:
 - It's not localized
 - The complexity is O(n).

23 / 28

Polynomial filter

 $g(\Lambda) = \sum_{k=1}^{L} \theta_k \Lambda^K$

- Spectral filters represented by *K*th-order polynomials of the Laplacian are *K*-localized: connect all the vertices in at most K steps.
- Learning complicity is O(K)
- Use Chebyshev polynomial to make it faster: $g(\Lambda) = \sum_{k=1}^{L} \theta_k T_k(\Lambda)$, where $T_k = 2xT_{k-1} T_{k-2}$

Figure 2: Example of Graph Coarsening and Pooling. Let us carry out a max pooling of size 4 (or two poolings of size 2) on a signal $x \in \mathbb{R}^8$ living on \mathcal{G}_0 , the finest graph given as input. Note that it originally possesses $n_0 = |\mathcal{V}_0| = 8$ vertices, arbitrarily ordered. For a pooling of size 4, two coarsenings of size 2 are needed: let Graclus gives \mathcal{G}_1 of size $n_1 = |\mathcal{V}_1| = 5$, then \mathcal{G}_2 of size $n_2 = |\mathcal{V}_2| = 3$, the coarsest graph. Sizes are thus set to $n_2 = 3$, $n_1 = 6$, $n_0 = 12$ and fake nodes (in blue) are added to \mathcal{V}_1 (1 node) and \mathcal{V}_0 (4 nodes) to pair with the singeltons (in orange), such that each node has exactly two children. Nodes in \mathcal{V}_2 are then arbitrarily ordered and nodes in \mathcal{V}_1 and \mathcal{V}_0 are ordered consequently. At that point the arrangement of vertices in \mathcal{V}_0 permits a regular 1D pooling on $x \in \mathbb{R}^{12}$ such that $z = [\max(x_0, x_1), \max(x_4, x_5, x_6), \max(x_8, x_9, x_{10})] \in \mathbb{R}^3$, where the signal components x_2, x_3, x_7, x_{11} are set to a neutral value.

< 4 ₽ × <

Model	Architecture	Accuracy
Classical CNN Proposed graph CNN	C32-P4-C64-P4-FC512	99.33 99.14

Table 1: Classification accuracies of the proposed graph CNN and a classical CNN on MNIST.

< 4 → <

Model	Accuracy
Linear SVM	65.90
Multinomial Naive Bayes	68.51
Softmax	66.28
FC2500	64.64
FC2500-FC500	65.76
GC32	68.26

Table 2: Accuracies of the proposed graphCNN and other methods on 20NEWS.

Figure 3: Time to process a mini-batch of S = 100 20NEWS documents w.r.t. the number of words n.

- Laplacian Operator Wikipedia
- 2 An introduction to spectral graph theory Jiang Jiaqi
- Ocnvolutional Neural Networks on Graphs with Fast Localized Spectral Filtering Michaël Defferrard, Xavier Bresson, Pierre Vandergheynst(EPFL, Lausanne, Switzerland)
- Spectral Networks and Locally Connected Networks on Graphs Joan Bruna, Wojciech Zaremba, Arthur Szlam, Yann LeCun
- 6 Graph signal processing: Concepts, tools and applications Xiaowen Dong

28 / 28

< A > <