
Graph Neural Networks:
A Review of Methods and Applications

Jie Zhou∗, Ganqu Cui∗, Zhengyan Zhang∗, Cheng Yang, Zhiyuan Liu,
Maosong Sun

Tsinghua University
arxiv 2019

https://qdata.github.io/deep2Read

Presenter : Jack Lanchantin

1 / 60

https://qdata.github.io/deep2Read

Outline

1 Introduction

2 Graph Neural Networks

3 Graph Variants

4 Objective Variants

5 Propagation Variants
Convolution

Spectral
Spatial

Gating
Attention
Skip Connections

6 Training Variants

7 Applications and Datasets

2 / 60

Graphs

Type of data structure which models a set of objects (vertices) and their
relationships (edges).

3 / 60

Graphs

Type of data structure which models a set of objects (vertices) and their
relationships (edges).

3 / 60

Euclidean Data: RNNs/CNNs

4 / 60

Non-Euclidean Data

5 / 60

How to extend CNNs to graph-structured data?

Assumption: Non-Euclidean data are locally stationary and manifest
hierarchical structures.

But, how to define compositionality on graphs? (convolution and
pooling on graphs)

6 / 60

Outline

1 Introduction

2 Graph Neural Networks

3 Graph Variants

4 Objective Variants

5 Propagation Variants
Convolution

Spectral
Spatial

Gating
Attention
Skip Connections

6 Training Variants

7 Applications and Datasets

7 / 60

Learning on Graphs

Naive approach: a per-node classifier

Represent each node v as vector hv ∈ Rs

Completely drop the graph structure, and classify each node
individually, with a shared deep neural network classifier:

ov = f (hv ; W) (1)

Methods like DeepWalk also classify each node independently, but
inject graph structure indirectly using learned embeddings

8 / 60

Learning on Graphs

Naive approach: a per-node classifier

Represent each node v as vector hv ∈ Rs

Completely drop the graph structure, and classify each node
individually, with a shared deep neural network classifier:

ov = f (hv ; W) (1)

Methods like DeepWalk also classify each node independently, but
inject graph structure indirectly using learned embeddings

8 / 60

Learning on Graphs
(from Petar Velickovic)

Most deep learning is done this way, even if there are relationships
between training examples

9 / 60

Graph Neural Networks

Originally introduced by Scarselli et. al. (2009)

The goal of GNNs is to learn a state embedding hv ∈ Rs which
contains information of the neighborhood for each node

hv can be used to produce an output ov such as the node label

10 / 60

Graph Neural Networks

Local transition function f : updates each node state according to its
neighborhood (shared among all nodes)

Output function g : describes how the output is produced

Then, hv and ov are defined as follows:

hv = f (xv , xe(v),hn(v), xn(v)) (2)

ov = g(hv , xv) (3)

where xv are the features of v , xe(v) the features of its edges, hn(v)

the states of the nodes in the neighborhood of v , and xn(v) the
features of the nodes in the neighborhood of v

11 / 60

Graph Neural Networks

Local transition function f : updates each node state according to its
neighborhood (shared among all nodes)

Output function g : describes how the output is produced

Then, hv and ov are defined as follows:

hv = f (xv , xe(v),hn(v), xn(v)) (2)

ov = g(hv , xv) (3)

where xv are the features of v , xe(v) the features of its edges, hn(v)

the states of the nodes in the neighborhood of v , and xn(v) the
features of the nodes in the neighborhood of v

11 / 60

Graph Neural Networks Update Step

GNNs use the following iterative update to compute the state:

Ht+1 = f (Ht ,X) (4)

where Ht denotes the t-th iteration of H.

12 / 60

Graph Neural Networks

13 / 60

Graph Neural Network Training

Given a GNN framework, learn the parameters of f and g

With the target information (tv for a specific node) for the
supervision, the loss can be written as:

loss =

p∑
i=1

(ti − oi) (5)

where p is the number of supervised nodes.

Weights W of f and g are updated via gradient descent

14 / 60

Graph Neural Networks Training

Original GNN constrains f to be a contractive map

Contractive map, on a metric space (M, d) is a function f from M to
itself, with the property that there is some real number 0 ≤ k < 1 such
that for all x and y in M, d(f (x), f (y)) ≤ k d(x , y)

This implies that the hv vectors will always converge to a unique fixed
point (very restrictive)

Impossible to inject problem-specific information into h0v (will always
converge to same value regardless of initialization)

15 / 60

Graph Neural Networks Training

Original GNN constrains f to be a contractive map

Contractive map, on a metric space (M, d) is a function f from M to
itself, with the property that there is some real number 0 ≤ k < 1 such
that for all x and y in M, d(f (x), f (y)) ≤ k d(x , y)

This implies that the hv vectors will always converge to a unique fixed
point (very restrictive)

Impossible to inject problem-specific information into h0v (will always
converge to same value regardless of initialization)

15 / 60

Graph Neural Networks (compact representation)

Let H, O, X, and XN be the vectors constructed by stacking all the states,
all the outputs, all the features, and all the node features, respectively.
Then we have a compact form as:

H = f (H,X) (6)

O = g(H,XN) (7)

16 / 60

Outline

1 Introduction

2 Graph Neural Networks

3 Graph Variants

4 Objective Variants

5 Propagation Variants
Convolution

Spectral
Spatial

Gating
Attention
Skip Connections

6 Training Variants

7 Applications and Datasets

17 / 60

Directed Graphs

e.g. Knowledge graphs where there is a parent and child.

Can use different weights for each edge type

18 / 60

Heterogeneous Graphs

e.g. Multi-model biological network data

Can group neighbors based on types or distance

19 / 60

Graphs with Edge Information

e.g. Drug interaction data with different types of interactions (edges).
Each edge also has its information like the weight or the type of the
edge.

Can use different types of weight matrices

20 / 60

Graph Types

21 / 60

Outline

1 Introduction

2 Graph Neural Networks

3 Graph Variants

4 Objective Variants

5 Propagation Variants
Convolution

Spectral
Spatial

Gating
Attention
Skip Connections

6 Training Variants

7 Applications and Datasets

22 / 60

Objectives

Node-level outputs: prediction for each node in the graph (e.g.
classify each person in a social network)

Edge-level outputs: prediction for each edge in the graph (e.g.
classify each friendship in a social network)

Graph-level outputs; prediction on the graph as a whole (e.g.
classify an entire group in a social network)

23 / 60

Objective Frameworks

Supervised learning for node, edge, or graph level classification:
Given full labeled networks, predict target objective

Semi-supervised learning for node or edge level classification:
Given a single network with partial nodes being labeled and others
remaining unlabeled

Unsupervised learning for graph embedding: When no class labels
are available in graphs, we can learn the graph embedding in a purely
unsupervised way

24 / 60

Outline

1 Introduction

2 Graph Neural Networks

3 Graph Variants

4 Objective Variants

5 Propagation Variants
Convolution

Spectral
Spatial

Gating
Attention
Skip Connections

6 Training Variants

7 Applications and Datasets

25 / 60

Propagation Variants

The propagation (update) step and output step are the crucial
components to obtain the hidden states of nodes (or edges).

H = f (H,X)

Variants utilize different aggregators to gather information from each
node’s neighbors and updaters to update nodes’ hidden states

26 / 60

Outline

1 Introduction

2 Graph Neural Networks

3 Graph Variants

4 Objective Variants

5 Propagation Variants
Convolution

Spectral
Spatial

Gating
Attention
Skip Connections

6 Training Variants

7 Applications and Datasets

27 / 60

Convolution

Advances in this direction are often categorized into either spectral or
spatial approaches

28 / 60

Spectral Convolution Methods

Define a convolutional operation by operating on the graph in the
spectral domain, leveraging the convolution theorem

These approaches utilise the graph Laplacian matrix, L, defined as L
= D− A, where D is the degree matrix (diagonal matrix with Dii =
deg(i)) and A is the adjacency matrix.

29 / 60

Limitations of Spectral Methods

Poor generalization to new/different graphs

Graphs with variable size: spectral techniques work with fixed size
graphs.

Directed graphs: definition of directed graph Laplacian is unclear.

30 / 60

Transductive Learning
(from Petar Velickovic)

Training algorithm sees all features (including test nodes)
31 / 60

Inductive Learning
(from Petar Velickovic)

Algorithm does not have access to all nodes upfront. Two variations:
1 Test nodes are (incrementally) inserted into training graphs
2 Test graphs are disjoint and completely unseen

Requires generalizing across arbitrary graph structures, thus many
transductive methods are useless

32 / 60

Spectral vs Spatial

33 / 60

Spatial Convolution Methods

Spatial approaches define convolutions directly on the graph,
operating on spatially close neighbors

Major challenge: defining convolution with different sized
neighborhoods and maintaining the local invariance of CNNs

34 / 60

Spatial Convolution Methods
Duvenaud GCN - Duvenaud et. al., 2015

Different weight matrices are used for nodes with different degrees,

x = hv +
Nv∑
i=1

hi

h′v = σ
(

xWNv
L

) (8)

where WNv
L is the weight matrix for nodes with degree Nv at layer L

Problem: doesn’t scale to graphs with very wide degree distributions

35 / 60

Spatial Convolution Methods
Diffusion-convolutional neural networks (DCNNs) - Atwood et. al.,2016

Transition matrices are used to define the neighborhood for nodes in
DCNN. For node classification, it has

H = f (Wc � P∗X) (9)

X is an N × F matrix of input features (N is the number of nodes
and F is the number of features)

P∗ is an N × K × N tensor which contains the power series {P,P2,
..., PK} of matrix P (where P is the degree- normalized transition
matrix from the adjacency matrix A)

P∗ transforms each node into a K × F diffusion convolutional
representation

36 / 60

Spatial Convolution Methods
GraphSAGE - Hamilton et. al.,2017

General inductive framework

Restricts every degree to be the same (by sampling a fixed-size set a
node’s local neighborhood, during both training and inference)

ht
Nv

= AGGREGATEt

(
{ht−1

u ,∀u ∈ Nv}
)

ht
v = σ

(
Wt · [ht−1

v ‖ht
Nv

]
) (10)

Key is that Wt is not shared across time steps T

37 / 60

Spatial Convolution Methods
GraphSAGE - Hamilton et. al.,2017

General inductive framework

Restricts every degree to be the same (by sampling a fixed-size set a
node’s local neighborhood, during both training and inference)

ht
Nv

= AGGREGATEt

(
{ht−1

u ,∀u ∈ Nv}
)

ht
v = σ

(
Wt · [ht−1

v ‖ht
Nv

]
) (10)

Key is that Wt is not shared across time steps T

37 / 60

Spatial Methods: Summary

38 / 60

Outline

1 Introduction

2 Graph Neural Networks

3 Graph Variants

4 Objective Variants

5 Propagation Variants
Convolution

Spectral
Spatial

Gating
Attention
Skip Connections

6 Training Variants

7 Applications and Datasets

39 / 60

Gating
Gated Graph Neural Networks (GGNNs) - Li et al. 2016

Extension of original GNN (Scarselli et. al. 2009)

Propagate for T steps, but do not restrict the propagation model to
be contractive

Use gating in the propagation step to alleviate gradient issues

40 / 60

Gating

Initial idea: update ht
v using neighborhood summation and tanh

at
v = b +

∑
j∈Nv

ht−1
j (11)

ht
v = tanh(Wat

v) (12)

Now, extend this to incorporate gating mechanisms, to prevent full
overwrite of ht−1

v by ht
v

41 / 60

Gating
Gated Graph Neural Networks (GGNNs) - Li et al. 2016

Gating mechanism defined similar to LSTM:

at
v = b +

∑
j∈Nv

ht−1
j (13)

ztv = σ
(
Wzat

v + Uzht−1
v

)
(14)

rtv = σ
(
Wrat

v + Urht−1
v

)
(15)

h̃t
v = tanh

(
Wat

v + U
(
rtv � ht−1

v

))
(16)

ht
v =

(
1− ztv

)
� ht−1

v + ztv � h̃t
v (17)

Where � is element-wise multiplication, and zv and rv are the update and
reset vectors, respectively

42 / 60

Outline

1 Introduction

2 Graph Neural Networks

3 Graph Variants

4 Objective Variants

5 Propagation Variants
Convolution

Spectral
Spatial

Gating
Attention
Skip Connections

6 Training Variants

7 Applications and Datasets

43 / 60

Attention
Graph attention network (GAT) - Velickovic et. al., 2017

Gating mechanisms are designed for data that changes sequentially;
however, our graphs have static features

GAT incorporates attention mechanisms into the propagation step

44 / 60

Attention

GAT uses a self-attention mechanism to compute the hidden states of
each node by attending over itself and its neighbors

45 / 60

Attention

GAT uses a self-attention mechanism to compute the hidden states of
each node by attending over itself and its neighbors

45 / 60

Attention
Graph attention network (GAT) - Velickovic et. al., 2017

evj = a(Wahv ,W
bhj) (18)

αvj =
exp(evj)∑

k∈Nv
exp(eik)

(19)

hv = σ

(∑
j∈Nv

αvjW
zhj

)
(20)

46 / 60

Attention

47 / 60

Gating and Attention

48 / 60

Outline

1 Introduction

2 Graph Neural Networks

3 Graph Variants

4 Objective Variants

5 Propagation Variants
Convolution

Spectral
Spatial

Gating
Attention
Skip Connections

6 Training Variants

7 Applications and Datasets

49 / 60

Skip Connections
Highway GCN - Rahimi et. al.,2018

Uses uses layer-wise gates. The output of a layer is summed with its input
with gating weights (inspired by Highway nets)

T(ht) = σ
(
Wtht + bt

)
ht+1 = ht+1 � T(ht) + ht � (1− T(ht))

(21)

50 / 60

Skip Connections
Jump Knowledge Network (JKN) - Xu et. al., 2018

With neighborhood aggregation, the receptive field of each node
grows exponentially w.r.t. the number of layers (steps) T
The Jump Knowledge Network selects from all of the intermediate
representations for each node at the last layer

Allows the model adapt the effective neighborhood size for each node
as needed

51 / 60

Propagation Methods: Summary

52 / 60

Outline

1 Introduction

2 Graph Neural Networks

3 Graph Variants

4 Objective Variants

5 Propagation Variants
Convolution

Spectral
Spatial

Gating
Attention
Skip Connections

6 Training Variants

7 Applications and Datasets

53 / 60

Training Methods

GraphSAGE solved the problems of the original GCN by replacing full
graph Laplacian with learnable aggregation functions, which are key
to generalize to unseen nodes.

In addition, GraphSAGE uses neighbor sampling to alleviate receptive
field expansion

54 / 60

Training Methods

Chen et. al (2018) proposed a control-variate based stochastic
approximation algorithms by utilizing the historical activations of
nodes as a control variate.

This limits the receptive field in the 1-hop neighborhood, but is
efficient

55 / 60

Training Methods

Li et. al. (2018) note that GNNs requires many additional labeled
data for validation and also suffers from the localized nature of the
convolutional filter

To solve the limitations, the authors propose a method to find the
nearest neighbors of training data and a boosting-like method

56 / 60

Training Methods

57 / 60

Outline

1 Introduction

2 Graph Neural Networks

3 Graph Variants

4 Objective Variants

5 Propagation Variants
Convolution

Spectral
Spatial

Gating
Attention
Skip Connections

6 Training Variants

7 Applications and Datasets

58 / 60

Application Areas

59 / 60

Commonly Used Datasets

60 / 60

	Introduction
	Graph Neural Networks
	Graph Variants
	Objective Variants
	Propagation Variants
	Convolution
	Gating
	Attention
	Skip Connections

	Training Variants
	Applications and Datasets

