Graph Neural Networks:
A Review of Methods and Applications

Jie Zhou™, Ganqu Cui*, Zhengyan Zhang™, Cheng Yang, Zhiyuan Liu,
Maosong Sun
Tsinghua University
arxiv 2019

https://qdata.github.io/deep2Read

Presenter : Jack Lanchantin

https://qdata.github.io/deep2Read

© Introduction

Type of data structure which models a set of objects (vertices) and their
relationships (edges).

Type of data structure which models a set of objects (vertices) and their
relationships (edges).

® Graph G=WE

@ Vertices v=A{1,...,n}

o Edges ECY XV

@ Vertex weights b, >0forieV

o Edge weights a;; >0 for (4,5) € €

Euclidean Data: RNNs/CNNs

© Image, volume, video: 2D, 1 1
3D, 2D+1 Euclidean ae =SR] . .

domains :

@ Sentence, word, sound: 1D
Euclidean domain

@ These domains have nice regular spatial structures.
= All ConvNet operations are math well defined and fast (convolution, pooling).

Xavier Bresson

Non-Euclidean Data

Social networks Regulatory networks

Graphs/
Networks

Functional networks 3D shapes

@ Also chemistry, NLP, physics, social science, communication networks, etc.

Xavier Bresson

How to extend CNNs to graph-structured data?

o Assumption: Non-Euclidean data are locally stationary and manifest
hierarchical structures.

@ But, how to define compositionality on graphs? (convolution and
pooling on graphs)

© Graph Neural Networks

Learning on Graphs

Naive approach: a per-node classifier
@ Represent each node v as vector h, € R®

@ Completely drop the graph structure, and classify each node
individually, with a shared deep neural network classifier:

o, = f(hy; W) (1)
o o 4

Learning on Graphs

Naive approach: a per-node classifier
@ Represent each node v as vector h, € R®

@ Completely drop the graph structure, and classify each node
individually, with a shared deep neural network classifier:

o, = f(hy; W) (1)
o o 4

o ® e o
o ®

@ Methods like DeepWalk also classify each node independently, but
inject graph structure indirectly using learned embeddings

Learning on Graphs

(from Petar Velickovic)

@ Most deep learning is done this way, even if there are relationships
between training examples

Graph Neural Networks

@ Originally introduced by Scarselli et. al. (2009)

@ The goal of GNNs is to learn a state embedding h, € R® which
contains information of the neighborhood for each node

@ h, can be used to produce an output o, such as the node label

Graph Neural Networks

@ Local transition function f: updates each node state according to its
neighborhood (shared among all nodes)

@ Output function g: describes how the output is produced

Graph Neural Networks

@ Local transition function f: updates each node state according to its
neighborhood (shared among all nodes)

@ Output function g: describes how the output is produced

@ Then, h, and o, are defined as follows:
h, = f(Xv, Xe(v)s hn(v)a xn(v)) (2)

o, = g(hy,,x,) (3)

where x, are the features of v, x.(,) the features of its edges, h,(,)
the states of the nodes in the neighborhood of v, and x,,) the
features of the nodes in the neighborhood of v

Graph Neural Networks Update Step

GNNs use the following iterative update to compute the state:
HiL = F(H, X) (4)

where H? denotes the t-th iteration of H.

Graph Neural Networks

Input

Hidden layer
.
.
.
L]
.
® o
»
.
-
']
.
®
']
.
.
Q
.

RelU

Hidden layer

]

L]
b+ 2

*
[]

® o

»

»
bt !

L4
[]

* o

.

L]
* e

L]
.

® %

RelU

Qutput

Graph Neural Network Training

@ Given a GNN framework, learn the parameters of f and g
e With the target information (t, for a specific node) for the
supervision, the loss can be written as:

P

loss = (tj — 0;) (5)

i=1
where p is the number of supervised nodes.
o Weights W of f and g are updated via gradient descent

Graph Neural Networks Training

@ Original GNN constrains f to be a contractive map

o Contractive map, on a metric space (M, d) is a function f from M to
itself, with the property that there is some real number 0 < k < 1 such
that for all x and y in M, d(f(x),f(y)) < kd(x,y)

Graph Neural Networks Training

@ Original GNN constrains f to be a contractive map
o Contractive map, on a metric space (M, d) is a function f from M to
itself, with the property that there is some real number 0 < k < 1 such
that for all x and y in M, d(f(x),f(y)) < kd(x,y)
@ This implies that the h, vectors will always converge to a unique fixed
point (very restrictive)

e Impossible to inject problem-specific information into A9 (will always
converge to same value regardless of initialization)

Graph Neural Networks (compact representation)

Let H, O, X, and Xy be the vectors constructed by stacking all the states,
all the outputs, all the features, and all the node features, respectively.
Then we have a compact form as:

H = f(H, X) (6)

Ozg(H,XN) (7)

© Graph Variants

Directed Graphs

o e.g. Knowledge graphs where there is a parent and child.

@ Can use different weights for each edge type

Heterogeneous Graphs

@ e.g. Multi-model biological network data

@ Can group neighbors based on types or distance

o,
©%.0° @ Mode 1
%00
o o L]
Y L

e

Graphs with Edge Information

@ e.g. Drug interaction data with different types of interactions (edges).
Each edge also has its information like the weight or the type of the
edge.

@ Can use different types of weight matrices

Simvastatin

®

)
Ciprofloxacin

21,
Doxycycline d b Mupirocin

________ v ADGPM
.‘ Directed +—
!\ _ Graph_,
Graph Types """""%I”'H'eiéraéénéaﬁs? “'—— GraphlInception
S Graph :
T Rage)

@ Objective Variants

o Node-level outputs: prediction for each node in the graph (e.g.
classify each person in a social network)

o Edge-level outputs: prediction for each edge in the graph (e.g.
classify each friendship in a social network)

e Graph-level outputs; prediction on the graph as a whole (e.g.
classify an entire group in a social network)

Objective Frameworks

@ Supervised learning for node, edge, or graph level classification:
Given full labeled networks, predict target objective

e Semi-supervised learning for node or edge level classification:
Given a single network with partial nodes being labeled and others
remaining unlabeled

@ Unsupervised learning for graph embedding: When no class labels
are available in graphs, we can learn the graph embedding in a purely
unsupervised way

© Propagation Variants

Propagation Variants

@ The propagation (update) step and output step are the crucial
components to obtain the hidden states of nodes (or edges).

H = f(H,X)

@ Variants utilize different aggregators to gather information from each
node’s neighbors and updaters to update nodes’ hidden states

© Propagation Variants
@ Convolution

Convolution

Advances in this direction are often categorized into either spectral or
spatial approaches

Spectral Convolution Methods

@ Define a convolutional operation by operating on the graph in the
spectral domain, leveraging the convolution theorem

@ These approaches utilise the graph Laplacian matrix, L, defined as L
= D — A, where D is the degree matrix (diagonal matrix with D;; =
deg()) and A is the adjacency matrix.

Labeled graph Degree matrix Adjacency matrix Laplacian matrix
200000 010010 2 -1 0 0 -1 0
e 030000 101010 -1 3 -1 0 -1 0
eo'o 002000 010100 0 -1 2 -1 0 0
. 000300 001011 0 0 -1 3 -1 -1
e 6 0 00O036O0 110100 -1 -1 0 -1 3 0
000 O0O0T1 000100 0 0 0 -1 0 1

Limitations of Spectral Methods

@ Poor generalization to new/different graphs

@ Graphs with variable size: spectral techniques work with fixed size
graphs.

@ Directed graphs: definition of directed graph Laplacian is unclear.

Transductive Learning

(from Petar Velickovic)

o}'e‘ =.§§ W
28 o2 2 Q0 0%@
@.s%'-.'@-gf’" ‘@ﬁ@:{h’ﬁ.
LT PO (]
"090‘@ o&&‘;o'“(.-sf'é% ‘}:,é'.?g .:J
o. % ap"&”‘ & °% o'° u,@j‘o‘. e
L5

o .%'“ S eGetnese
e . (LY) e
‘“,3 ce o} %‘ d'V”aro ". " ®
‘Q . . nfi‘ 4 % ':i‘l' 5;. .o. .

5
(g %:?’i" "5.:“(60"0
e® e

°
l.o!

oo Ooge 00 ¢ 00 o . o S oo
,o,&’{&ﬁ.ﬁuﬂw &o i‘d‘,; % '005‘5’&i.". 8 =

0 6% o 20 T ° o
o e i ‘:"..5, ‘0':*.; 3':‘2.:,"3,:',&‘.'-‘5
e oy, © 00 Y
% .’.-% ﬁﬁ"‘%‘\!ﬂ .8 'Q,QQ.‘u.a’O:-’ :3‘&;’.. ‘33'5:..),, =3 .59‘
.& S0 o s % 59_!‘:(..;.
.Gf'yo.wo 9{’. "D.o- .y ,’i .;, &

Training algorithm sees all features (including test nodes)

Inductive Learning

(from Petar Velickovic)

@ Algorithm does not have access to all nodes upfront. Two variations:
@ Test nodes are (incrementally) inserted into training graphs
@ Test graphs are disjoint and completely unseen
@ Requires generalizing across arbitrary graph structures, thus many
transductive methods are useless

Spectral vs Spatial

=
Euclidean Non-Euclidean Change one single
space/grid space/graph edge
Fixed domain Variable domain
Standard Spectral graph Can we still use
ConvNets ConvNets spectral graph
ConvNets?

Are spectral filters

Spectral NNs offer rich
= transferable?

families of spectral filters

Spatial Convolution Methods

@ Spatial approaches define convolutions directly on the graph,
operating on spatially close neighbors

@ Major challenge: defining convolution with different sized
neighborhoods and maintaining the local invariance of CNNs

Spatial Convolution Methods

Duvenaud GCN - Duvenaud et. al., 2015

o Different weight matrices are used for nodes with different degrees,

Ny
x=h, + ; h; -
, = o (xw;")

where W{_\/" is the weight matrix for nodes with degree NV, at layer L

@ Problem: doesn't scale to graphs with very wide degree distributions

Spatial Convolution Methods

Diffusion-convolutional neural networks (DCNNs) - Atwood et. al.,2016

@ Transition matrices are used to define the neighborhood for nodes in
DCNN. For node classification, it has

H = f (WS © P*X) (9)

e X is an N x F matrix of input features (N is the number of nodes
and F is the number of features)
@ P*isan N x K x N tensor which contains the power series {P, P2,

.., PK} of matrix P (where P is the degree- normalized transition
matrix from the adjacency matrix A)

o P* transforms each node into a K x F diffusion convolutional
representation

Spatial Convolution Methods

GraphSAGE - Hamilton et. al.,2017

@ General inductive framework

@ Restricts every degree to be the same (by sampling a fixed-size set a
node’s local neighborhood, during both training and inference)

h. = AGGREGATE;, ({h}!,Yu e N,})

10
bt — o (WE - (R) (10

o

FRIERIE

K=2 K=2

1.Sample 2. Aggregate 3. Predict node labels
from neigl

Spatial Convolution Methods

GraphSAGE - Hamilton et. al.,2017

@ General inductive framework

@ Restricts every degree to be the same (by sampling a fixed-size set a
node’s local neighborhood, during both training and inference)

h. = AGGREGATE;, ({h}!,Yu e N,})

10
bt — o (WE - (R) (10

o

| N (’"'7?
| . .
\ R
\ K=1 K=y

K=2 K=2

1.Sample 2. Aggregate 3. Predict node labels
from neighbors

o Key is that W! is not shared across time steps T

Spatial Methods: Summary

Variant

Aggregator

Updater

Convolutional
networks in
[33]

by, = b~ + 3500 by

h! = o(hf, Wy")

Node classification:

DCNN N=pP'X WO
Graph classification: =f(©®N)
N=14P*X/N

GraphSAGE | hi, = AGGREGATE, ({h1,VueN,}) | hi =0 (W' [hiYh}])

© Propagation Variants

e Gating

Gating

Gated Graph Neural Networks (GGNNs) - Li et al. 2016

@ Extension of original GNN (Scarselli et. al. 2009)

@ Propagate for T steps, but do not restrict the propagation model to
be contractive

o Use gating in the propagation step to alleviate gradient issues

Initial idea: update hi, using neighborhood summation and tanh

al =b+ Z hf_l (11)
JENy
h! = tanh(Wa!) (12)

Now, extend this to incorporate gating mechanisms, to prevent full
overwrite of hi~! by h!

Gating

Gated Graph Neural Networks (GGNNs) - Li et al. 2016

Gating mechanism defined similar to LSTM:

al=b+ > hit (13)
JEN,

zy, = o (W?a) + U*h{) (14)

ri =0 (W"al + U'hi) (15)

ht = tanh (Wa’ + U (r{ © hi™1)) (16)

h! = (1—2) ohit + 2L O ht (17)

Where © is element-wise multiplication, and z, and r, are the update and
reset vectors, respectively

© Propagation Variants

@ Attention

Attention

Graph attention network (GAT) - Velickovic et. al., 2017

@ Gating mechanisms are designed for data that changes sequentially;
however, our graphs have static features

@ GAT incorporates attention mechanisms into the propagation step

Attention

| accord sur la zone économique européenne a été signé en aolt 1992 <end>
1 1 1 1 1 1 1 1 1 I I I 1 1
Br—|B— B— B8B— Bf— B—B—(Br—|B—|Br—|B—|Br—|B—|B—|B

T T | |

1 1

A || A || A |[e=| A || A || A || A || A || A || A || A

—| A || A |e—] A

T T T T 1 1 l 1 1 l T T T T

the agreement on the European Economic Area was signed in August 1992 <end>

Attention

3 accord sur la zone économique européenne a été signé en aolt 1992 <end>
1 1 1 I 1 1 1 1 T I I 1 1 1 i
Br—|B— B— B8B— Bf— B—B—(Br—|B—|Br—|B—|Br—|B—|B—|B

T l I I

/

[

I I
—| A || A || A || A
1 l ! T i 1
August 1992 . <end>

A|e=| A || A= A || A || A || A — A | A |— A
1 ! T T 1 1 l 1

European Economic Area was signed in

the agreement on the

GAT uses a self-attention mechanism to compute the hidden states of
each node by attending over itself and its neighbors

Attention

Graph attention network (GAT) - Velickovic et. al., 2017

e,j = a(W?h,, W"h)) (18)
exp(eyj)
= L (19)
T Y ken, exp(eix)
h, = g< > aVJ-WZhJ) (20)
JEN,

O

!

Q
A s~
Q) th b, C)

=
@2 =/ et dea)

(a) Graph Convolution Net-
works [14] explicitly assign a
non-parametric weight a;; =

L to the neigh-

Vdeg(vi)deg(vj)

bor v; of v; during the aggre-
gation process.

Attention

O,

!

h,

@)
~
O h§ b, C)

« - 1

Ay « O

N

o000 P09

o000 0P

.

h,

(b) Graph Attention Networks
[15] implicitly capture the
weight a;; via an end to end
neural network architecture,

so that more important nodes
receive larger weights.

Gating and Attention

Name Variant Aggregator Updater
_ exp(LeakyReLU(a” [Why [Why]))
Aok = 55 exp(LeakyReLU(a7 [Wh, [Wh;]))
hiy, =0 (Zien, awrWht)
Graph GAT Mulﬁ-he;ld concatenation: bt = b,
Attention hj. = Hm:l 0 (Xren, @ W™hy)
Network
erworks Multi-head average:
by, =0 (& oy Seew, @l W™ hy)
zi, = o(W*h}, +U=h}™")
. rl = o(Wrhiy +Uh™)
Gated Graph | GGNN hiy =Y en, by +b N

Neural Net-
works

h = tanh(Whi, + U(r}, © "))
hi =(1-z)ohi~ ' +2z, o hf

© Propagation Variants

o Skip Connections

Skip Connections

Highway GCN - Rahimi et. al.,2018

Uses uses layer-wise gates. The output of a layer is summed with its input
with gating weights (inspired by Highway nets)
Th)) =0 (Wtht + bt)

h*' = h* o T(h") + h' © (1 - T(h")) @)

» Highway Network * Residual Network
at " at
'/“T"_ 1
z controls red arrow D — \y’ a'

h

h Q00000
Gate copy
controlle 000000] |copy

r

aH gt

Skip Connections

Jump Knowledge Network (JKN) - Xu et. al., 2018

@ With neighborhood aggregation, the receptive field of each node
grows exponentially w.r.t. the number of layers (steps) T

@ The Jump Knowledge Network selects from all of the intermediate
representations for each node at the last layer

o Allows the model adapt the effective neighborhood size for each node
as needed

pYinad

f

ayer aggregatio
Concat/Max-pooling/LSTM-atn
ThP e rtn

N. A

1h e ren

{

1 h® € res

[) € et

~E

Input feature of node v: X, € R%

Propagation Methods: Summary

———————— Spectral J
Grapl.l ‘f Spectral ,‘"' Methods
Convolutional i: ______ 1
Networks (- S
1 Spatial | ~
_______ \A Non-spectral
Graph Attention Methods 3
Networks
5 A Gated Graph L
T [7 Neural Networks
Step \ ,,,,,,,,,, .
\ ! Gate = cemcce==s
\ | Updater | ISTM |
i “» Graph LSTM -
N sip 1 v Highway GNN
| connection |
"""""" Jump Knowledge

Network

Spectral
Network

ChebNet

Molecular
Convolutional
Network

DCNN

MoNet

GraphSAGE

@ Training Variants

Training Methods

@ GraphSAGE solved the problems of the original GCN by replacing full
graph Laplacian with learnable aggregation functions, which are key
to generalize to unseen nodes.

@ In addition, GraphSAGE uses neighbor sampling to alleviate receptive
field expansion

Training Methods

@ Chen et. al (2018) proposed a control-variate based stochastic
approximation algorithms by utilizing the historical activations of
nodes as a control variate.

@ This limits the receptive field in the 1-hop neighborhood, but is
efficient

Training Methods

o Liet. al. (2018) note that GNNs requires many additional labeled
data for validation and also suffers from the localized nature of the
convolutional filter

@ To solve the limitations, the authors propose a method to find the
nearest neighbors of training data and a boosting-like method

Training Methods

GraphSAGE
jmmmmmmmmmm .
1 NeighborhOod \ i
Sampling i —
Adaptive
L - (------ | B -- ~
Training 1 ReceptiveField |, ooniolVariate
Methods | Control :
| Boostng ‘ , Co-training
: Boosting :,::::7._,7. .
N i .

\-*1 Se]f-train lng
GCN

@ Applications and Datasets

I AR

) prysie (b) molecule

punct
ﬂm nsubj ﬂp \

\The L ditle L7 cat " looks L lovely 7—'] ‘

(d) text

N
’ :
E/

Commonly Used Datasets

Category Dataset Source # Graphs | # Nodes | # Edges #Features | # Labels
Cora [103] 1 2708 5429 1433 7
Citation
Networks | o ceer [103] 1 3327 4732 3703 6
Pubmed [103] 1 19717 44338 500 3
dblp.uni-trier.de
DBLP [105](aminer.org 1 - - - -
/citation)
Social BlogCatalog [107] 1 10312 333983 - 39
N Reddit [24] 1 232965 11606919 | 602 41
etworks —
Epinions www.epinions.com | 1 - - - -
PPI [109] 24 56944 818716 50 121
. NCI-1 110 4100 - - 37 2
Chemical/ | NCT109 110 117 - - 38 3
Gra ﬁ MUTAG 111 188 - - 7 2
phs D&D 112] 1178 - - - 2
QM9 113 133885 - - - 13
tripod.nih.gov _ R R
tox21 tox21/challenge/ 12707 -
_ yann.lecun.com _ B R
Ilfrr:itruct MNIST Jexdb/mnist/ 70000 10
e . www.mattmahoney
Graphs Wikipedia net/dc/textdata 1 4777 184812 - 40
20NEWS [114] 1 18846 - - 20

	Introduction
	Graph Neural Networks
	Graph Variants
	Objective Variants
	Propagation Variants
	Convolution
	Gating
	Attention
	Skip Connections

	Training Variants
	Applications and Datasets

