End-to-End Differentiable Adversarial Imitation Learning

Nir Baram¹ Oron Anschel ¹ Itai Caspi¹ Shie Mannor¹

¹Technion Institute of Technology, Israel.

ICML, 2017 Presenter: Xueying Bai

Nir Baram, Oron Anschel , Itai Caspi, Shie MEnd-to-End Differentiable Adversarial Imitatic

Introduction

- Task
- Related Work
- Motivation

2 Background

- Markov Decision Process
- Imitation Learning
- Generative Adversarial Networks

3 Algorithm

- The Discriminator Network
- Backpropagating Through Stochastic Units
- Backpropagating Through a Forward Model
- MGAIL Algorithm

Introduction

- Task
- Related Work
- Motivation

- Markov Decision Process
- Imitation Learning
- Generative Adversarial Networks

- The Discriminator Network
- Backpropagating Through Stochastic Units
- Backpropagating Through a Forward Model
- MGAIL Algorithm

- Task: Learning a policy which imitates the expert policy.
- Imitation is needed for:
 - Automation: when the expert is human
 - Distillation: when the expert is too expensive to run in realtime
 - Initialization: when using an expert policy as an initial solution

• To be more specific:

Assume that trajectories $\{s_0, a_0, s_1, ...\}_N^{i=0}$ of an expert policy π_E are given. The goal is to train a new policy π which imitates π_E without access to the original reward signal r_E that was used by the expert.

イロン イロン イヨン イヨン 三日

Introduction

- Task
- Related Work
- Motivation

- Markov Decision Process
- Imitation Learning
- Generative Adversarial Networks

- The Discriminator Network
- Backpropagating Through Stochastic Units
- Backpropagating Through a Forward Model
- MGAIL Algorithm

Related Work

There are two main approaches to solve imitation problems.

- Behavioral Cloning (BC): directly learns p(a|s) in a supervised learning fashion. But only uses single $\{s_t, a_t\}$, which ignores current action's affect to future state distribution. Also requires a significant amount of expert data for training.
- A Two-stage Imitation Algorithm: First, recover a reward signal under which the expert is uniquely optimal.

$$E\left[\sum_{t} \gamma^{t} \hat{r}(s_{t}, a_{t}) | \pi_{E}\right] \geq E\left[\sum_{t} \gamma^{t} \hat{r}(s_{t}, a_{t}) | \pi\right], \forall \pi$$

Then train a policy that maximizes the discounted cumulative expected reward.

$$E_{\pi}R = E_{\pi} \left[\sum_{t} \gamma^{t} \widehat{r}_{t} \right]$$

But the reward only comes from the observation. Better to be designed by hand.

Task

- Related Work
- Motivation

Background

- Markov Decision Process
- Imitation Learning
- Generative Adversarial Networks

3 Algorithm

- The Discriminator Network
- Backpropagating Through Stochastic Units
- Backpropagating Through a Forward Model
- MGAIL Algorithm

- Use GAN to imitate an expert. GAN can alleviate problems in imitation learning such as sample complexity.
- Problem: when training stochastic policies, the presence of stochastic elements breaks the flow of information, thus prohibits the use of backpropagation.
- This paper presents a model-based imitation learning algorithm (MGAIL), in which information propagates fluently. Also a forward process is proposed to approximate the environments' dynamics.

- Task
- Related Work
- Motivation

2 Background

- Markov Decision Process
- Imitation Learning
- Generative Adversarial Networks

3 Algorithm

- The Discriminator Network
- Backpropagating Through Stochastic Units
- Backpropagating Through a Forward Model
- MGAIL Algorithm

- An infinite-horizon discounted MDP is defined by the tuple $(S, A, P, r, \rho_0, \gamma)$:
- S: a set of states A: a set of actions $P: S \times A \times S \rightarrow [0, 1]$: transition probability distribution $r: (S \times A) \rightarrow R$: reward function ρ_0 : distribution over initial states $\gamma \in (0, 1)$: discount factor $\pi: S \times A \rightarrow [0, 1]$: a stochastic policy $R(\pi)$: expected discounted reward of π , $E_{\pi}R = E_{\pi}\left[\sum_{t} \gamma^t \hat{r}_t\right]$ $\tau = \{s_0, a_0, s_1, a_1\}$: trajectory of states and actions

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 国

- Task
- Related Work
- Motivation

2 Background

- Markov Decision Process
- Imitation Learning
- Generative Adversarial Networks

3 Algorithm

- The Discriminator Network
- Backpropagating Through Stochastic Units
- Backpropagating Through a Forward Model
- MGAIL Algorithm

Imitation Learning

Learning control policies directly from expert demonstrations.

Train a policy π to minimize some loss function *l*(*s*, π(*s*)), under the discounted state distribution encountered by the expert:
 *d*_π(*s*) = (1 − γ) ∑_{t=0}[∞] γ^t p(s_t). The learned policy is:
 π = arg minE_{ext} [*l*(*s*, π(*s*))]

$$\pi = \arg\min_{\pi \in \Pi} E_{s \sim d_{\pi}} \left[I(s, \pi(s)) \right]$$

 $\boldsymbol{\Pi}$ denotes the class of all possible policies.

Problem: the policy's prediction will affect future state distribution.

• Forward Training to train a non-stationary policy (π_t for each time). π_t is induced by $\pi_0, ... \pi_{t-1}$, with actual state distribution at each time.

Problem: Impractical.

• Stochastic Mixing Iterative Learning (SMILe): train a stochastic stationary policy over several iterations.

$$\pi_t = \pi_{t-1} + \alpha (1-\alpha)^{t-1} (\widehat{\pi}_t - \pi_0)$$

 π_0 : expert's initial state, $\widehat{\pi}_t$: trained policy induced by π_{t-1} , $\pi_t = 1$

Task

- Related Work
- Motivation

2 Background

- Markov Decision Process
- Imitation Learning
- Generative Adversarial Networks

3 Algorithm

- The Discriminator Network
- Backpropagating Through Stochastic Units
- Backpropagating Through a Forward Model
- MGAIL Algorithm

• Objective function:

$$\underset{G}{\operatorname{arg\,min\,arg\,max}} E_{x \sim p_E}[\log D(x)] + E_{z \sim p_z}[\log(1 - D(G(z)))]$$

 p_E is expert input distribution, p_z is the noise distribution.

• Gradients:

$$abla_{ heta_d} rac{1}{m} \sum_{i=1}^m \left[\log D_{ heta_d}(x^i) + \log(1 - D_{ heta_d}(\mathcal{G}(z^i)))
ight]$$

$$abla_{ heta_g} rac{1}{m} \sum_{i=1}^m \log(1 - D(G_{ heta_g}(z^i)))$$

-2

ヘロト 人間 ト くほ ト くほ トー

GAIL

A model-free GAN approach for policy imitation learning.

• Objective function:

 $\arg\min_{\pi} \arg\max_{D \in (0,1)} E_{\pi}[\log D(s,a)] + E_{\pi_E}[\log(1 - D(s,a)] - \lambda H(\pi)$

$$H(\pi) = E_{\pi}[-\log \pi(a|s)]$$

• Gradients:

Because the generator π is now stochasitic,

$$E_{\pi}[\log D(s,a)] = E_{s \sim
ho_{\pi}(s)} E_{a \sim \pi(\cdot|s)}[\log D(s,a)]$$

if $\boldsymbol{\pi}$ is deterministic,

$$E_{\pi}[\log D(s,a)] = E_{s \sim
ho}[\log D(s,\pi(s))]$$

So assume $\pi = \pi_{\theta}$, unknown how to differentiate the objective function w.r.t θ .

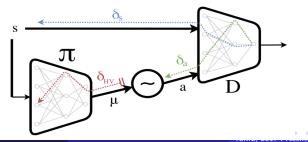
Score function methods

The method to obtain an unbiased gradient estimation.

۲

$$egin{aligned}
abla_ heta E_\pi[\log D(s,a)] &\cong \widehat{E}_{ au_i}[
abla_ heta \log \pi_ heta(a|s)Q(s,a)]\ Q(\widehat{s},\widehat{a}) &= \widehat{E}_{ au_i}[\log D(s,a)|s_0 = \widehat{s},a_0 = \widehat{a}] \end{aligned}$$

- Suffer from high variance.
- *D* will only give a score, *G* didn't access to the internal decision making logic of *D*.
- $\bullet\,$ It's better to use the Jacobian of D when calculating θ



- Task
- Related Work
- Motivation
- 2 Background
 - Markov Decision Process
 - Imitation Learning
 - Generative Adversarial Networks

3 Algorithm

• The Discriminator Network

- Backpropagating Through Stochastic Units
- Backpropagating Through a Forward Model
- MGAIL Algorithm

The Discriminator Network

For a good learner: what to inspect from the discriminator?

$$D(s,a) = p(y|s,a), y \in \{\pi_E, \pi\}$$

• By Bayesian rule: $\varphi(s, a) = \frac{p(a|s, \pi_E)}{p(a|s, \pi)}$: policy likelihood ratio $\psi(s) = \frac{p(s|\pi_E)}{p(s|\pi)}$: state distribution likelihood ratio

$$D(s,a) = rac{1}{1 + arphi(s,a) \cdot \psi(s)}$$

• A good learner should consider two effects: how its choice of actions stands against the expert? how it affects the future state distribution? Partial derivatives can reveal such information:

$$\nabla_{a}D = -\frac{\varphi_{a}(s,a) \cdot \psi(s)}{\left(1 + \varphi(s,a) \cdot \psi(s)\right)^{2}}$$
$$\nabla_{s}D = -\frac{\varphi_{s}(s,a) \cdot \psi(s) + \varphi(s,a) \cdot \psi_{s}(s)}{\left(1 + \varphi(s,a) \cdot \psi(s)\right)^{2}}$$

Task

- Related Work
- Motivation

2 Background

- Markov Decision Process
- Imitation Learning
- Generative Adversarial Networks

3 Algorithm

• The Discriminator Network

Backpropagating Through Stochastic Units

- Backpropagating Through a Forward Model
- MGAIL Algorithm

Estimate the gradients of continuous stochastic elements by re-parametrization.

• Assume a stochastic policy with a Gaussian distribution:

$$\pi_{ heta}(a|s) \sim \mathsf{N}(\mu_{ heta}(s), \sigma^2(s))$$

$$\pi_{ heta}(\boldsymbol{a}|\boldsymbol{s}) = \mu_{ heta}(\boldsymbol{s}) + \xi \sigma_{ heta}(\boldsymbol{s}), \xi \sim N(0,1)$$

 Mont-Carlo estimator of the derivative of the expected value of D(s, a):

$$\nabla_{\theta} E_{\pi(a|s)}[\log D(s,a)] = E_{\rho(\xi)} \nabla_{a} D(s,a) \nabla_{\theta} \pi_{\theta}(a|s)$$
$$\cong \frac{1}{M} \sum_{i=1}^{M} \nabla_{a} D(s,a) \nabla_{\theta} \pi_{\theta}(a|s)|_{\xi=\xi_{i}}$$

伺 ト イヨ ト イヨ ト

• Use softmax in the sampling procedure:

$$a_{soft \max} = \frac{\exp[\frac{1}{\tau}(g_i + \log \pi(a_i|s))]}{\sum_{j=1}^k \exp[\frac{1}{\tau}(g_i + \log \pi(a_i|s))]}$$

 $g_i \sim Gumbel(0, 1)$, τ is a hyper-parameter that trades bias with variance.

- To output action, apply *argmax* over *a_softmax*
- Use the continuous approximation in the backward pass:

 $abla_{ heta} a_{ ext{arg max}} pprox
abla_{ heta} a_{ ext{soft max}}$

★週 ▶ ★ 国 ▶ ★ 国 ▶ 二 国

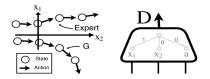
- Task
- Related Work
- Motivation
- 2 Background
 - Markov Decision Process
 - Imitation Learning
 - Generative Adversarial Networks

3 Algorithm

- The Discriminator Network
- Backpropagating Through Stochastic Units
- Backpropagating Through a Forward Model
- MGAIL Algorithm

Backpropagating through a Forward model

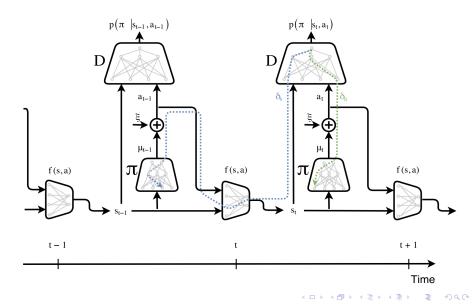
In the previous parts, only ∇_aD is used. However, ∇_sD is also important.



• Let $s_t = f(s_{t-1}, a_{t-1}), f$ is the forward model. So the gradient of θ is:

$$\left. \nabla_{\theta} D(s_t, a_t) \right|_{s=s_t, a=a_t} = \frac{\partial D}{\partial a} \frac{\partial a}{\partial \theta} \bigg|_{a=a_t} + \frac{\partial D}{\partial s} \frac{\partial s}{\partial \theta} \bigg|_{s=s_t} = \frac{\partial D}{\partial a} \frac{\partial a}{\partial \theta} \bigg|_{a=a_t} + \frac{\partial D}{\partial s} \left(\frac{\partial f}{\partial s} \frac{\partial s}{\partial \theta} \bigg|_{s=s_{t-1}} + \frac{\partial f}{\partial a} \frac{\partial a}{\partial \theta} \bigg|_{a=a_{t-1}} \right)_{.}$$

Model Overview



- Task
- Related Work
- Motivation

- Markov Decision Process
- Imitation Learning
- Generative Adversarial Networks

3 Algorithm

- The Discriminator Network
- Backpropagating Through Stochastic Units
- Backpropagating Through a Forward Model
- MGAIL Algorithm

• For a multi-step transition, the objective function is:

$$J(\theta) = E[\sum_{t=0} \gamma^t D(s_t, a_t)]$$

Gradient:

$$J_{s} = \mathbb{E}_{p(a|s)} \mathbb{E}_{p(s'|s,a)} \left[D_{s} + D_{a}\pi_{s} + \gamma J_{s'}'(f_{s} + f_{a}\pi_{s}) \right]$$
$$J_{\theta} = \mathbb{E}_{p(a|s)} \mathbb{E}_{p(s'|s,a)} \left[D_{a}\pi_{\theta} + \gamma (J_{s'}'f_{a}\pi_{\theta} + J_{\theta}') \right].$$

米田 とくほと くほと

Algorithm

Algorithm 1 Model-based Generative Adversarial Imitation Learning

1: Input: Expert trajectories τ_E , experience buffer \mathcal{B} , initial policy and discriminator parameters θ_a , θ_d 2: for trajectory = 0 to ∞ do 3: for t = 0 to T do 4: Act on environment: $a = \pi(s, \xi; \theta_a)$ 5: Push (s, a, s') into \mathcal{B} end for 6. 7: train forward model f using \mathcal{B} train discriminator model D_{θ_d} using \mathcal{B} 8: set: $j'_{s} = 0, j'_{\theta_{a}} = 0$ 9: for t = T down to 0 do 10: 11: $j_{\theta_a} = \left[D_a \pi_{\theta_a} + \gamma (j'_{s'} f_a \pi_{\theta_a} + j'_{\theta_a}) \right]|_{\varepsilon}$ $j_s = \left[D_s + D_a \pi_s + \gamma j'_{s'} (f_s + f_a \pi_{\theta_a})\right] \Big|_{\epsilon}$ 12: 13: end for Apply gradient update using $j_{\theta_a}^0$ 14: 15: end for

(本部) (本語) (本語) (二語

- 3 discrete taskss (Cartpole, Mountain-Car, Acrobot), 5 continuous control tasks (Hopper, Walker, Half-Cheetah, Ant, and Humanoid)
- For each task, produce datasets with a different number of trajectories, where each trajectory is of length N = 1000.

Result

Task	Dataset size	Behavioral cloning	GAIL	MGAIL
Cartpole	1	72.02 ± 35.82	200.00 ± 0.00	200.00 ± 0.00
-	4	169.18 ± 59.18	200.00 ± 0.00	200.00 ± 0.00
	7	188.60 ± 29.61	200.00 ± 0.00	200.00 ± 0.00
	10	177.19 ± 52.83	200.00 ± 0.00	200.00 ± 0.00
Mountain Car	1	-136.76 ± 34.44	-101.55 ± 10.32	-107.4 ± 10.89
	4	-133.25 ± 29.97	-101.35 ± 10.63	-100.23 ± 11.52
	7	-127.34 ± 29.15	-99.90 ± 7.97	-104.23 ± 14.31
	10	-123.14 ± 28.26	-100.83 ± 11.40	-99.25 ± 8.74
Acrobot	1	-130.60 ± 55.08	-77.26 ± 18.03	-85.65 ± 23.74
	4	-93.20 ± 35.58	-83.12 ± 23.31	-81.91 ± 17.41
	7	-96.92 ± 34.51	-82.56 ± 20.95	-80.74 ± 14.02
	10	-95.09 ± 33.33	-78.91 ± 15.76	-77.93 ± 14.78
Hopper	4	50.57 ± 0.95	3614.22 ± 7.17	3669.53 ± 6.09
	11	1025.84 ± 266.86	3615.00 ± 4.32	3649.98 ± 12.36
	18	1949.09 ± 500.61	3600.70 ± 4.24	3661.78 ± 11.52
	25	3383.96 ± 657.61	3560.85 ± 3.09	3673.41 ± 7.73
Walker	4	32.18 ± 1.25	4877.98 ± 2848.37	6916.34 ± 115.20
	11	5946.81 ± 1733.73	6850.27 ± 91.48	7197.63 ± 38.34
	10	1969 09 1947 74	<u> </u>	

Nir Baram, Oron Anschel , Itai Caspi, Shie MEnd-to-End Differentiable Adversarial Imitatic