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o Task: Learning a policy which imitates the expert policy.
o Imitation is needed for:
e Automation: when the expert is human
o Distillation: when the expert is too expensive to run in realtime
o Initialization: when using an expert policy as an initial solution
@ To be more specific:
Assume that trajectories {sp, ag, 1, ...}’N:O of an expert policy wg are
given. The goal is to train a new policy m which imitates 7 without
access to the original reward signal rg that was used by the expert.
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Related Work

There are two main approaches to solve imitation problems.

e Behavioral Cloning (BC): directly learns p(a|s) in a supervised
learning fashion. But only uses single {s;, a;}, which ignores current
action’s affect to future state distribution. Also requires a significant
amount of expert data for training.

@ A Two-stage Imitation Algorithm: First, recover a reward signal
under which the expert is uniquely optimal.

E [Z'yt?(st,at)]WE] > E [th?(st,at)hr] Ay

Then train a policy that maximizes the discounted cumulative

expected reward.
ETI‘R =E; [Z ’}/ta]
t

But the reward only comes from the observation. Better to be
designed by hand.
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@ Use GAN to imitate an expert. GAN can alleviate problems in
imitation learning such as sample complexity.

@ Problem: when training stochastic policies, the presence of stochastic
elements breaks the flow of information, thus prohibits the use of
backpropagation.

@ This paper presents a model-based imitation learning algorithm
(MGAIL), in which information propagates fluently. Also a forward
process is proposed to approximate the environments’ dynamics.
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Markov Decision Process

@ An infinite-horizon discounted MDP is defined by the tuple
(S,A,P,r,po,7):
@ S: a set of states
A: a set of actions
P:S5xAxS —|[0,1]: transition probability distribution
r: (S x A) — R: reward function
po: distribution over initial states
v € (0,1): discount factor
m:5 x A—[0,1]: a stochastic policy
R(m): expected discounted reward of m, E;R = E; [Z fyt’r}]

t
T = {s0, a0, 51, a1 }: trajectory of states and actions
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Imitation Learning

Learning control policies directly from expert demonstrations.
@ Train a policy 7 to minimize some loss function /(s,m(s)), under the
discounted state distribution encountered by the expert:
dr(s) = (1 —7) > 5007 p(st). The learned policy is:

7 = arg minE,.q, [I(s,7(s))
S

I denotes the class of all possible policies.
Problem:the policy’s prediction will affect future state distribution.
e Forward Training to train a non-stationary policy (7 for each time).
m¢ is induced by 7, ...m¢—1, with actual state distribution at each
time.
Problem: Impractical.
@ Stochastic Mixing Iterative Learning (SMILe): train a stochastic
stationary policy over several iterations.

e =me—1 + a1l — a)til(ﬁ'\t — )

mo: expert's initial state, 7;: trained policy induced by 7 1
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GAN

@ Objective function:

arg min arg max Eyp,[log D(x)] + E;~p,[log(1 — D(G(z)))]
G De(0,1)

PE is expert input distribution, p, is the noise distribution.

@ Gradients:

Vo> [0g Day () +log(1 — Dy, (G(z)]
i=1

Vo, > log(1 — D(Gy, (1)
i=1
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GAIL

A model-free GAN approach for policy imitation learning.
@ Objective function:

arg min arg max E;[log D(s, a)] + Ex.[log(1 — D(s, a)] — AH(~)
7r De(0,1)

H(m) = E;[— logm(a|s)]

@ Gradients:
Because the generator 7 is now stochasitic,

ETI'[IOg D(S, a)] = Es~p7r(s) Ea~7r(~|s)[|0g D(Sa a)]
if 7 is deterministic,
Ex[log D(s, a)] = Es~p[log D(s,7(s))]

So assume 7 = my, unknown how to differentiate the objective
function w.r.t 6.
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Score function methods

The method to obtain an unbiased gradient estimation.
°
VoEx[log D(s, a)] = E, [V log m(als) Q(s, )]
Q(5,3) = E..[log D(s, a)|so = 5, ap = 3]
@ Suffer from high variance.
@ D will only give a score, G didn’t access to the internal decision

making logic of D.
@ It's better to use the Jacobian of D when calculating 6
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The Discriminator Network

For a good learner: what to inspect from the discriminator?
°
D(s,a) = p(yls, a),y € {mg, 7}

o By Bayesian rule:

o(s,a) = %: policy likelihood ratio 9(s) = pp((ss‘ﬁs): state
distribution ﬁikelihood ratio

1
b2 = 13062 069)

@ A good learner should consider two effects: how its choice of actions
stands against the expert? how it affects the future state
distribution? Partial derivatives can reveal such information:

__pals,a) - 9(s)

(L+ (s a) - ¥(s))?
ps(s,a) - P(s) + o(s, a) - ¥s(s)
(1+ (s, a) - (s))*

V.D =

VsD = —
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Coutinuous Action Distributions

Estimate the gradients of continuous stochastic elements by
re-parametrization.

@ Assume a stochastic policy with a Gaussian distribution:
mo(als) ~ N(uo(s), 0°(s))

7T9(3|S) = /.LQ(S) + 509(5)75 ~ N(O’ 1)
@ Mont-Carlo estimator of the derivative of the expected value of
D(s, a):
VyE, a|s)[log D(s, a)] = Epe)VaD(s,a)Vaa(als)

~ L Z VaD(s, a)V9W9(3|5)|§:£.-
i=1
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Categorical Action Distributions

@ Use softmax in the sampling procedure:

dsoft max —

exp[2(g; + log7(aj|s))]
S exp[(gi + log (ails))]

gi ~ Gumbel(0,1), 7 is a hyper-parameter that trades bias with
variance.

@ To output action, apply argmax over asoftmax

@ Use the continuous approximation in the backward pass:

vQQaarg max = V9asoft max
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Backpropagating through a Forward model

@ In the previous parts, only VD is used. However, VD is also
important.

X1

%:_:O»O”
o> “~— Expert D
O—> X2
O State Ck’— e n
]

o Let sy = f(st—1,a¢r—1), f is the forward model. So the gradient of @ is:

0D Oa oD 0s
VeDlsad| =505 Tasan|
oD dal oD (of os 01 da
da 80| s \ 9s 00| da 00|
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Model Overview

f(s,a) f(s,a)
t—1 t t+1
1 1 1 L
I T T >
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MGAIL Algorithm

e For a multi-step transition, the objective function is:

E[Z vED(st, at)]

o Gradient:

Js = Ep(als)Ep(s]s,a)

Ds + Daﬂ-s + ’YJ;’(fS + faﬂ's):| 5

Jo = Ep(a|s)Ep(s’|s,a) |:Da7T9 + ’Y(J;/faTro + Jé) .
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Algorithm

Algorithm 1 Model-based Generative Adversarial Imi-
tation Learning

1: Input: Expert trajectories 7z, experience buffer B, ini-

tial policy and discriminator parameters 6, 04

2: for trajectory = 0 to co do

3 fort =0to T do

4 Act on environment: a = 7(s, §; 0y)

5 Push (s, a, s") into B
6: end for
74
8
9

train forward model f using B
train discriminator model Dy, using B
©oset:jo=0,5p =0
10: for ¢ = T down to O do

11: jgg = [Damgg +’Y(j;/faﬂ'9g +jég)]|£
12: Js = [Ds+Da7rs+7j;'(fs+fa7reg)]|§
13: end for

14: Apply gradient update using jgg

15: end for
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@ 3 discrete taskss (Cartpole, Mountain-Car, Acrobot), 5 continuous
control tasks (Hopper, Walker, Half-Cheetah, Ant, and Humanoid)

@ For each task, produce datasets with a different number of
trajectories, where each trajectory is of length N = 1000.
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Task Dataset size  Behavioral cloning GAIL MGAIL

Cartpole 1 72.02 + 35.82 200.00 + 0.00 200.00 £+ 0.00
4 169.18 £ 59.18 200.00 + 0.00 200.00 4 0.00
7 188.60 £ 29.61 200.00 + 0.00 200.00 £ 0.00
10 177.19 £ 52.83 200.00 + 0.00 200.00 £+ 0.00

Mountain Car 1 —136.76 4= 34.44 —101.55 4+ 10.32 —107.4 +10.89
4 —133.25 +29.97 —101.35 4+ 10.63 —100.23 +11.52
7 —127.34 +29.15 —99.90 £ 7.97 —104.23 + 14.31
10 —123.14 4 28.26 —100.83 +11.40 —99.25 £ 8.74

Acrobot 1 —130.60 4 55.08 —77.26 £ 18.03 —85.65 £ 23.74
4 —93.20 + 35.58 —83.12 £ 23.31 —81.91 £ 17.41
7 —96.92 + 34.51 —82.56 £ 20.95 —80.74 £ 14.02
10 —95.09 + 33.33 —78.91 £ 15.76 —77.93 +£14.78

Hopper 4 50.57 £ 0.95 3614.22 £ 7.17 3669.53 £ 6.09
11 1025.84 4+ 266.86 3615.00 + 4.32 3649.98 £+ 12.36
18 1949.09 + 500.61 3600.70 + 4.24 3661.78 £ 11.52
25 3383.96 + 657.61 3560.85 + 3.09 3673.41 £7.73

Walker 4 32.18 £1.25 4877.98 £2848.37  6916.34 £+ 115.20
11 5946.81 + 1733.73

o co o 4 4 cocu o e
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6850.27 £91.48

7197.63 £ 38.34
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