Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction

Wen Sun ${ }^{1}$, Arun Venkatraman ${ }^{1}$, Geoffrey J. Gordon ${ }^{1}$, Byron Boots ${ }^{2}$, J. Andrew Bagnell ${ }^{1}$
${ }^{1}$ School of Computer Science, Carnegie Mellon University, USA ${ }^{2}$ College of Computing, Georgia Institute of Technology, USA

ICML 17'/ Presenter: Ji Gao

Outline

(1) Motivation
(2) Background
(3) Method
(4) Analysis
(5) Experiments

Motivation

- For some task, there are oracle policy could be utilized. (For example, human expert)
- Imitation learning: Supervised learning on the oracle
- AggreVaTeD: Differentiable version of AggreVaTe (Aggregate Values to Imitate (Ross \& Bagnell, 2014))

MDP

Defintion: Markov Decision Process

A MDP is defined as $\left(S, A, P, C, \rho_{0}, H\right)$.
S: Set of states
A : Set of Actions
$P\left(s_{t+1} \mid s_{t}, a_{t}\right)$: Transition probablity
$C\left(\cdot \mid s_{t}, a_{t}\right)$: A distribution of cost (negative reward). $\bar{c}\left(s_{t}, a_{t}\right)$: Expected cost.
ρ_{0} : initial distribution
H: Max Length of the MDP
Define a policy $\pi(\cdot \mid s)$ as a probability distribution on A.
The final distribution of the trajectories $\tau=\left(s_{1}, a_{1}, . ., a_{H-1}, s_{H}\right)$ is determined by pi and the MDP, as:

$$
\rho_{\pi}(\tau)=\rho_{0}\left(s_{1}\right) \prod_{t=2}^{H} \pi\left(a_{t-1} \mid s_{t-1}\right) P_{t-1}\left(s_{t} \mid s_{t-1}, a_{t-1}\right)
$$

Expert

- Value function:

$$
Q_{t}^{\pi}\left(s_{t}, a_{t}\right)=\bar{c}_{t}\left(s_{t}, a_{t}\right)+\mathbb{E}_{s \sim P_{t}\left(\cdot \mid s_{t}, a_{t}\right), a \sim \pi(\cdot \mid s)} Q_{t+1}^{\pi}(s, a)
$$

- Define expert policy π^{*} and expert oracle value $Q_{t}^{*}(s, a)$.
- Assume $Q_{t}^{*}(s, a)$ is known or can be estimated without bias.
- Idea: Approximate the export policy using an RNN.

Imitation Learning by AggreVaTe

- Use an online learner to update policies using the loss function at episode n :

$$
I_{n}(\pi)=\frac{1}{H} \sum_{t=1}^{H} \mathbb{E}_{s_{t}}\left[\mathbb{E}_{\mathrm{a} \sim \pi}\left[Q_{t}^{*}\left(s_{t}, a\right)\right]\right]
$$

- Specifically, the algorithm use Follow-the-Leader to update polices: $\pi_{n+1}=\arg \min _{\pi \in \Pi} \sum_{i=1}^{n} I_{n}(\pi)$
Π is a predefined convex set.
- After N iterations, the algorithm can find a policy with:
$\mu(\hat{\pi}) \leq \mu\left(\pi^{*}\right)-\epsilon_{N}+O(\ln (N) / N)$
Where $\epsilon_{N}=\left[\sum_{n=1}^{N} I_{n}\left(\pi^{*}\right)-\min _{\pi} \sum_{n=1}^{N} I_{n}(p i)\right] / N$
- Can outperform the original π^{*} when π^{*} is not optimal in the loss.

Gradient of the policy

- Suppose the policy π is parametrized by θ
- If actions are discrete, the gradient of $I_{n}\left(\pi_{\theta}\right)$ is:

$$
\nabla_{\theta} I_{n}(\theta)=\frac{1}{H} \sum_{t=1}^{H} \mathbb{E}_{\pi_{\theta_{n}}} \sum_{a} \nabla_{\theta} \pi\left(a \mid s_{t} ; \theta\right) Q_{t}\left(s_{t}, a\right)
$$

- If the actions are continuous, the score function must be changed to

$$
I_{n}\left(\pi_{\theta}\right)=\frac{1}{H} \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{n}}}} \sum_{t=1}^{H} \frac{\pi\left(a_{t} \mid s_{t} ; \theta\right)}{\pi\left(a_{t} \mid s_{t} ; \theta_{n}\right)} Q_{t}^{*}\left(s_{t}, a_{t}\right)
$$

In this form, the gradient is

$$
\nabla_{\theta} I_{n}(\theta)=\frac{1}{H} \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{n}}}} \sum_{t=1}^{H} \nabla_{\theta} \ln \left(\pi\left(a \mid s_{t} ; \theta_{n}\right)\right) Q_{t}\left(s_{t}, a_{t}\right)
$$

- Then the θ could be efficiently updated via gradient descent.

Natural Gradient

- If the parameter space is not an Euclidean space, gradient might be suboptimal.
- Natural Gradient: The steepest direction of change of a function whose manifold is on a Riemannian space.
- Euclidean space with orthonormal $|d w|^{2}=\sum_{i} d w_{i}^{2}$ Riemannian space: $|d w|^{2}=\sum_{i, j} g_{i j} w_{i} w_{j}$, where $G=g_{i j}$ is the Riemannian metric tensor.
- In the case of MDP, the trajectory is a variable in Riemannian space. The Fisher Information matrix is: $I\left(\theta_{n}\right)=\frac{1}{H^{2}} \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{n}}}} \nabla_{\theta_{n}} \log \left(\rho_{\pi_{\theta_{n}}}(\tau)\right) \nabla_{\theta_{n}} \log \left(\rho_{\pi_{\theta_{n}}}(\tau)\right)^{T}$
- Natural gradient update:

$$
\theta_{n+1}=\theta_{n}-\eta_{n} I\left(\theta_{n}\right)^{-1} \nabla_{\theta} I_{n}(\theta)
$$

Practical way

- Use sampling to approximate gradient:

$$
\tilde{\nabla}_{\theta} I_{n}(\theta)=\frac{1}{H K} \sum_{t=1}^{H} \sum_{i=1}^{K} \sum_{a} \nabla_{\theta} \pi\left(a \mid s_{t}^{i} ; \theta\right) Q_{t}\left(s_{t}^{i}, a\right)
$$

Algorithm

Use an annealing way to train:

Algorithm 1 AggreVaTeD (Differentiable AggreVaTe)

1: Input: The given MDP and expert π^{*}. Learning rate $\left\{\eta_{n}\right\}$. Schedule rate $\left\{\alpha_{i}\right\}, \alpha_{n} \rightarrow 0, n \rightarrow \infty$.
2: Initialize policy $\pi_{\theta_{1}}$ (either random or supervised learning).
3: for $\mathrm{n}=1$ to N do
4: \quad Mixing policies: $\hat{\pi}_{n}=\alpha_{n} \pi^{*}+\left(1-\alpha_{n}\right) \pi_{\theta_{n}}$.
5: Starting from ρ_{0}, roll in by executing $\hat{\pi}_{n}$ on the given MDP to generate K trajectories $\left\{\tau_{i}^{n}\right\}$.
6: Using Q^{*} and $\left\{\tau_{i}^{n}\right\}_{i}$, compute the descent direction $\delta_{\theta_{n}}$ (Eq. 10, Eq. 11, Eq. 12, Eq. 13, or CG).
7: Update: $\theta_{n+1}=\theta_{n}-\eta_{n} \delta_{\theta_{n}}$.
8: end for
9: Return: the best hypothesis $\hat{\pi} \in\left\{\pi_{n}\right\}_{n}$ on validation.

Compare IL and RL

- Suppose an MDP is a tree with $S=2^{K}-1$ states, and only leaf have a cost, random sampled from a given distribution.

- RL have the regret $E\left[R_{N}\right] \geq \Omega(\sqrt{S N})$.
- However, IL have the regret $R_{N} \leq O(\ln S)$ with the optimal Q^{*}, because it can directly know which way to go.
- In the case that the query of Q^{*} is noisy, it is proved that AggreVaTeD can achieve the regret bound for the tree MDP with at least $1-\delta$ probablity:

$$
R_{N} \leq O(\ln (S)(\sqrt{\ln (S) N})+\sqrt{\ln (2 / \delta) N})
$$

Near Optimality

- In the general case, with access to an unbiased estimates of Q^{*}, the algorithm achives the regret upper bound:

$$
R_{N} \leq O\left(H Q_{\max }^{e} \sqrt{|S| \ln (|A|) N}\right)
$$

$Q_{\text {max }}^{e}$ is the largest cost-to-go value of the expert.

- Also, it is proved that there exists an $\operatorname{MDP}(\mathrm{H}=1)$ that with acccess to the unbiased estimates of Q^{*}, any imitation learning algorithm have:

$$
E\left[R_{N}\right] \geq \Omega(\sqrt{|S| \ln (|A|) N})
$$

Experiment1 - Simulations of robots using OpenAI Gym

- Simulations of robots using OpenAI Gym
- Tasks:
- Cartpole
- Acrobot
- Hopper
- Walker

Result

Figure 2. Performance (cumulative reward R on y -axis) versus number of episodes (n on x -axis) of AggreVaTeD (blue and green), experts (red), and RL algorithms (dotted) on different robotics simulators.

Experiment2 - Handwritten Algebra parsing

- Parse handwritten algebra from raw image
- RNN policy from (Sutskever et al., 2014) paper

Arc-Eager	AggreVaTeD (LSTMs)	AggreVaTeD (NN)	SL-RL (LSTMs)	SL-RL(NN)	RL (LSTMs)	RL (NN)	DAgger	SL (LSTMs)	SL (NN)	Random	
Regular	$\mathbf{0 . 9 2 4} \pm 0.10$	0.851 ± 0.10	0.826 ± 0.09	0.386 ± 0.1	0.256 ± 0.07	0.227 ± 0.06	$0.83 \pm \pm .02$	0.813 ± 0.1	0.325 ± 0.2	~ 0.150	
Natural	0.915 ± 0.10	0.800 ± 0.10	0.824 ± 0.10	0.345 ± 0.1	0.237 ± 0.07	0.241 ± 0.07					

Table 1. Performance (UAS) of different approaches on handwritten algebra dependency parsing. SL stands for supervised learning using expert's samples: maximizing the likelihood of expert's actions under the sequences generated by expert itself. SL-RL means RL with initialization using SL. Random stands for the initial performances of random policies (LSTMs and NN). The performance of DAgger with Kernel SVM is from (Duyck \& Gordon, 2015).

