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Motivation

For some task, there are oracle policy could be utilized. (For example,
human expert)

Imitation learning: Supervised learning on the oracle

AggreVaTeD: Differentiable version of AggreVaTe (Aggregate Values
to Imitate (Ross & Bagnell, 2014))
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MDP

Defintion: Markov Decision Process

A MDP is defined as (S ,A,P,C , ρ0,H).
S : Set of states
A : Set of Actions
P(st+1|st , at): Transition probablity
C (·|st , at) : A distribution of cost (negative reward). c̄(st , at): Expected
cost.
ρ0 : initial distribution
H : Max Length of the MDP
Define a policy π(·|s) as a probability distribution on A.

The final distribution of the trajectories τ = (s1, a1, .., aH−1, sH) is
determined by pi and the MDP, as:

ρπ(τ) = ρ0(s1)
H∏
t=2

π(at−1|st−1)Pt−1(st |st−1, at−1)
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Expert

Value function:

Qπ
t (st , at) = c̄t(st , at) + Es∼Pt(·|st ,at),a∼π(·|s)Q

π
t+1(s, a)

Define expert policy π∗ and expert oracle value Q∗t (s, a).

Assume Q∗t (s, a) is known or can be estimated without bias.

Idea: Approximate the export policy using an RNN.
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Imitation Learning by AggreVaTe

Use an online learner to update policies using the loss function at
episode n:
ln(π) = 1

H

∑H
t=1 Est [Ea∼π[Q∗t (st , a)]]

Specifically, the algorithm use Follow-the-Leader to update polices:
πn+1 = arg minπ∈Π

∑n
i=1 ln(π)

Π is a predefined convex set.

After N iterations, the algorithm can find a policy with:
µ(π̂) ≤ µ(π∗)− εN + O(ln(N)/N)
Where εN = [

∑N
n=1 ln(π∗)−minπ

∑N
n=1 ln(pi)]/N

Can outperform the original π∗ when π∗ is not optimal in the loss.
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Gradient of the policy

Suppose the policy π is parametrized by θ

If actions are discrete, the gradient of ln(πθ) is:

∇θln(θ) =
1

H

H∑
t=1

Eπθn
∑
a

∇θπ(a|st ; θ)Qt(st , a)

If the actions are continuous, the score function must be changed to

ln(πθ) =
1

H
Eτ∼ρπθn

H∑
t=1

π(at |st ; θ)

π(at |st ; θn)
Q∗t (st , at)

In this form, the gradient is

∇θln(θ) =
1

H
Eτ∼ρπθn

H∑
t=1

∇θ ln(π(a|st ; θn))Qt(st , at)

Then the θ could be efficiently updated via gradient descent.
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Natural Gradient

If the parameter space is not an Euclidean space, gradient might be
suboptimal.

Natural Gradient: The steepest direction of change of a function
whose manifold is on a Riemannian space.

Euclidean space with orthonormal |dw |2 =
∑

i dw
2
i

Riemannian space: |dw |2 =
∑

i ,j gijwiwj , where G = gij is the
Riemannian metric tensor.

In the case of MDP, the trajectory is a variable in Riemannian space.
The Fisher Information matrix is:
I (θn) = 1

H2Eτ∼ρπθn∇θn log(ρπθn (τ))∇θn log(ρπθn (τ))T

Natural gradient update:

θn+1 = θn − ηnI (θn)−1∇θln(θ)
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Practical way

Use sampling to approximate gradient:

∇̃θln(θ) =
1

HK

H∑
t=1

K∑
i=1

∑
a

∇θπ(a|s it ; θ)Qt(s
i
t , a)
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Algorithm

Use an annealing way to train:
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Compare IL and RL

Suppose an MDP is a tree with S = 2K − 1 states, and only leaf have
a cost, random sampled from a given distribution.

RL have the regret E [RN ] ≥ Ω(
√
SN).

However, IL have the regret RN ≤ O(lnS) with the optimal Q∗,
because it can directly know which way to go.

In the case that the query of Q∗ is noisy, it is proved that
AggreVaTeD can achieve the regret bound for the tree MDP with at
least 1− δ probablity:

RN ≤ O(ln(S)(
√

ln(S)N) +
√

ln(2/δ)N)
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Near Optimality

In the general case, with access to an unbiased estimates of Q∗, the
algorithm achives the regret upper bound:

RN ≤ O(HQe
max

√
|S | ln(|A|)N)

Qe
max is the largest cost-to-go value of the expert.

Also, it is proved that there exists an MDP(H=1) that with acccess to
the unbiased estimates of Q∗, any imitation learning algorithm have:

E [RN ] ≥ Ω(
√
|S | ln(|A|)N)
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Experiment1 - Simulations of robots using OpenAI Gym

Simulations of robots using OpenAI Gym

Tasks:

Cartpole
Acrobot
Hopper
Walker
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Result

Wen Sun, Arun Venkatraman, Geoffrey J. Gordon, Byron Boots, J. Andrew Bagnell ( School of Computer Science, Carnegie Mellon University, USA)Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential PredictionICML 17’/ Presenter: Ji Gao 14 / 15



Experiment2 - Handwritten Algebra parsing

Parse handwritten algebra from raw image

RNN policy from (Sutskever et al., 2014) paper
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