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@ For some task, there are oracle policy could be utilized. (For example,
human expert)

@ Imitation learning: Supervised learning on the oracle

o AggreVaTeD: Differentiable version of AggreVaTe (Aggregate Values
to Imitate (Ross & Bagnell, 2014))
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MDP

Defintion: Markov Decision Process

A MDP is defined as (S, A, P, C, po, H).

S : Set of states

A : Set of Actions

P(st+1|st, at): Transition probablity

C(‘|st, at) : A distribution of cost (negative reward). &(s;, a;): Expected
cost.

po : initial distribution

H : Max Length of the MDP

Define a policy 7(:|s) as a probability distribution on A.

The final distribution of the trajectories 7 = (s1, a1, .., ay—_1, SH) is
determined by pi and the MDP, as:

H

Pw(T) = PO(SI) H W(at—l‘St—l)Pt—1(5t|5t—17 3t—1)
t=2

Wen Sun, Arun Venkatraman, Geoffrey J. GoDeeply AggreVaTeD: Differentiable Imitation  ICML 17’/ Presenter: Ji Gao



@ Value function:

Qf (st,ar) = Ce(st, ar) + ESNPt(~|st,at),a~7r(-|s) Qf+1(5a a)

o Define expert policy 7* and expert oracle value Qj(s, a).
@ Assume Qj(s, a) is known or can be estimated without bias.

o ldea: Approximate the export policy using an RNN.
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Imitation Learning by AggreVaTe

@ Use an online learner to update policies using the loss function at
episode n:
() = 4 2t o [Banr [ Q7 (st 3)]]

@ Specifically, the algorithm use Follow-the-Leader to update polices:
Tht1 = arg Mingen Y iy In(7)
I is a predefined convex set.

o After N iterations, the algorithm can find a policy with:
() < p(m*) — en + O(In(N)/N)
Where ey = [N 1,(n*) — ming SN 1(pi)]/N
@ Can outperform the original 7* when 7* is not optimal in the loss.
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Gradient of the policy

@ Suppose the policy 7 is parametrized by 6
o If actions are discrete, the gradient of /,(my) is:

H
1
Valh(0) = 5 > Er,, Y Vor(alse; 0)Q:(st, a)
t=1 a

@ If the actions are continuous, the score function must be changed to

1 H r(aelse; 0)
/ ="K, E ZAGtP6 ) oy«
’7(71-9) H Prg, ot W(at|5t; en) Qt (st? at)

In this form, the gradient is

H
1
V@/,,(@) = E]ETNPWGH E V@ |n(7T(a|St; 9,,))Qt(st, at)
t=1

@ Then the 0 could be efficiently updated via gradient descent.
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Natural Gradient

@ If the parameter space is not an Euclidean space, gradient might be
suboptimal.

o Natural Gradient: The steepest direction of change of a function
whose manifold is on a Riemannian space.

e Euclidean space with orthonormal |dw|? = 3. dw?
: : : 2 _ W W — o
Riemannian space: |dw|* =}, . gjwiw;, where G = gj; is the
Riemannian metric tensor.

@ In the case of MDP, the trajectory is a variable in Riemannian space.
The Fisher Information matrix is:

1(6n) = F2Ernpn, Vo, 10g(pr,, (7)) Vo, log(pr,, (7))
o Natural gradient update:

Oni1 = O — 10l (0,) " Vo ln(0)
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Practical way

@ Use sampling to approximate gradient:

H K
ol (0) = Hi ; ; Z Vor(alsi: 0)Qu(sl, )
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Algorithm

Use an annealing way to train:

Algorithm 1 AggreVaTeD (Differentiable AggreVaTe)

1:

Input: The given MDP and expert 7*. Learning rate
{7 }. Schedule rate {;}, o, = 0,n — oc.

: Initialize policy mp, (either random or supervised

learning).

: forn=1to Ndo

Mixing policies: 7, = a7 + (1 — o, )7,
Starting from pg, roll in by executing 7,, on the given
MDP to generate K trajectories {77 }.

Using Q* and {7}, compute the descent direction
dg, (Eq. 10, Eq. 11, Eq. 12, Eq. 13, or CG).
Update: #,,,1 = 0, — nndg,,.

: end for
: Return: the best hypothesis 7@ € {m,, }» on validation.
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Compare IL and RL

@ Suppose an MDP is a tree with S = 2/ — 1 states, and only leaf have
a cost, random sampled from a given distribution.

@ RL have the regret E[Ry] > Q(V/ SN).

o However, IL have the regret Ry < O(In S) with the optimal Q*,
because it can directly know which way to go.

@ In the case that the query of Q* is noisy, it is proved that
AggreVaTeD can achieve the regret bound for the tree MDP with at
least 1 — 9 probablity:

Ry < O(In(S)(v/In(S)N) + 1/In(2/5)N)
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Near Optimality

@ In the general case, with access to an unbiased estimates of Q*, the
algorithm achives the regret upper bound:

Ry < O(HQaV/ISIIn(|A[)N)

oax IS the largest cost-to-go value of the expert.

@ Also, it is proved that there exists an MDP(H=1) that with acccess to
the unbiased estimates of Q*, any imitation learning algorithm have:

E[Rn] = Q(v[S[In(JAN)
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Experimentl - Simulations of robots using OpenAl Gym

@ Simulations of robots using OpenAl Gym
@ Tasks:

Cartpole
Acrobot
Hopper
Walker
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Figure 2. Performance (cumulative reward R on y-axis) versus number of episodes (n on x-axis) of AggreVaTeD (blue and green),
experts (red), and RL algorithms (dotted) on different robotics simulators.
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Experiment2 - Handwritten Algebra parsing

@ Parse handwritten algebra from raw image

@ RNN policy from (Sutskever et al., 2014) paper

Arc-Eager  AggreVaTeD (LSTMs)  AggreVaTeD (NN)

SL-RL (LSTMs) SL-RL(NN) RL(LSTMs) RL(NN)  DAgger SL (LSTMs)
Regular  0.924+0.10 0.851£0.10 0.826:+ 0.09 0386+0.1 02562007  0.227£0.06
Natural — 0.915+0.10 0.800£0.10 0.8240.10 034501 0237£007 02a1x007 03322002 0813201

Table 1. Performance (UAS) of different approaches on handwritten algebra dependency parsing. SL stands for supervised learning using
expert’s samples: maximizing the likelihood of expert’s actions under the sequences generated by expert itself. SL-RL means RL with
initialization using SL. Random stands for the initial performances of random policies (LSTMs and NN). The performance of DAgger

with Kernel SVM is from (Duyck & Gordon, 2015).
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