Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction

Wen Sun¹, Arun Venkatraman¹, Geoffrey J. Gordon¹, Byron Boots², J. Andrew Bagnell¹

¹School of Computer Science, Carnegie Mellon University, USA ²College of Computing, Georgia Institute of Technology, USA

ICML 17'/ Presenter: Ji Gao

2 Background

Wen Sun, Arun Venkatraman, Geoffrey J. GoDeeply AggreVaTeD: Differentiable Imitation ICML 17'/ Presenter: Ji Gao 2 / 15

æ

- For some task, there are oracle policy could be utilized. (For example, human expert)
- Imitation learning: Supervised learning on the oracle
- AggreVaTeD: Differentiable version of AggreVaTe (Aggregate Values to Imitate (Ross & Bagnell, 2014))

MDP

Defintion: Markov Decision Process

A MDP is defined as (S, A, P, C, ρ_0, H) .

S : Set of states

A : Set of Actions

 $P(s_{t+1}|s_t, a_t)$: Transition probablity

 $C(\cdot|s_t, a_t)$: A distribution of cost (negative reward). $\bar{c}(s_t, a_t)$: Expected cost.

 ρ_0 : initial distribution H: Max Length of the MDP Define a policy $\pi(\cdot|s)$ as a probability distribution on A.

The final distribution of the trajectories $\tau = (s_1, a_1, ..., a_{H-1}, s_H)$ is determined by *pi* and the MDP, as:

$$\rho_{\pi}(\tau) = \rho_0(s_1) \prod_{t=2}^{H} \pi(a_{t-1}|s_{t-1}) P_{t-1}(s_t|s_{t-1}, a_{t-1})$$

• Value function:

$$Q_t^{\pi}(s_t, a_t) = \bar{c}_t(s_t, a_t) + \mathbb{E}_{s \sim P_t(\cdot|s_t, a_t), a \sim \pi(\cdot|s)} Q_{t+1}^{\pi}(s, a)$$

- Define expert policy π^* and expert oracle value $Q_t^*(s, a)$.
- Assume $Q_t^*(s, a)$ is known or can be estimated without bias.
- Idea: Approximate the export policy using an RNN.

- Use an online learner to update policies using the loss function at episode n:
 I_n(π) = ¹/_H Σ^H_{t=1} E_{st}[E_{a∼π}[Q^{*}_t(s_t, a)]]
- Specifically, the algorithm use Follow-the-Leader to update polices: $\pi_{n+1} = \arg \min_{\pi \in \Pi} \sum_{i=1}^{n} I_n(\pi)$ Π is a predefined convex set.
- After N iterations, the algorithm can find a policy with: $\mu(\hat{\pi}) \leq \mu(\pi^*) - \epsilon_N + O(\ln(N)/N)$ Where $\epsilon_N = \left[\sum_{n=1}^N I_n(\pi^*) - \min_{\pi} \sum_{n=1}^N I_n(pi)\right]/N$
- Can outperform the original π^* when π^* is not optimal in the loss.

Gradient of the policy

- Suppose the policy π is parametrized by θ
- If actions are discrete, the gradient of $I_n(\pi_{\theta})$ is:

$$\nabla_{\theta} I_n(\theta) = \frac{1}{H} \sum_{t=1}^{H} \mathbb{E}_{\pi_{\theta_n}} \sum_{a} \nabla_{\theta} \pi(a|s_t;\theta) Q_t(s_t,a)$$

• If the actions are continuous, the score function must be changed to

$$I_n(\pi_{\theta}) = \frac{1}{H} \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_n}}} \sum_{t=1}^{H} \frac{\pi(a_t | s_t; \theta)}{\pi(a_t | s_t; \theta_n)} Q_t^*(s_t, a_t)$$

In this form, the gradient is

$$\nabla_{\theta} I_n(\theta) = \frac{1}{H} \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_n}}} \sum_{t=1}^{H} \nabla_{\theta} \ln(\pi(a|s_t;\theta_n)) Q_t(s_t,a_t)$$

• Then the θ could be efficiently updated via gradient descent.

- If the parameter space is not an Euclidean space, gradient might be suboptimal.
- Natural Gradient: The steepest direction of change of a function whose manifold is on a Riemannian space.
- Euclidean space with orthonormal $|dw|^2 = \sum_i dw_i^2$ Riemannian space: $|dw|^2 = \sum_{i,j} g_{ij} w_i w_j$, where $G = g_{ij}$ is the Riemannian metric tensor.
- In the case of MDP, the trajectory is a variable in Riemannian space. The Fisher Information matrix is: $I(\theta_n) = \frac{1}{H^2} \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_n}}} \nabla_{\theta_n} \log(\rho_{\pi_{\theta_n}}(\tau)) \nabla_{\theta_n} \log(\rho_{\pi_{\theta_n}}(\tau))^T$
- Natural gradient update:

$$\theta_{n+1} = \theta_n - \eta_n I(\theta_n)^{-1} \nabla_{\theta} I_n(\theta)$$

• Use sampling to approximate gradient:

$$ilde{
abla}_{ heta} l_n(heta) = rac{1}{HK} \sum_{t=1}^{H} \sum_{i=1}^{K} \sum_{a}
abla_{ heta} \pi(a|s_t^i; heta) Q_t(s_t^i, a)$$

э

Use an annealing way to train:

Algorithm 1 AggreVaTeD (Differentiable AggreVaTe)

- 1: **Input:** The given MDP and expert π^* . Learning rate $\{\eta_n\}$. Schedule rate $\{\alpha_i\}, \alpha_n \to 0, n \to \infty$.
- 2: Initialize policy π_{θ_1} (either random or supervised learning).
- 3: **for** n = 1 to N **do**
- 4: Mixing policies: $\hat{\pi}_n = \alpha_n \pi^* + (1 \alpha_n) \pi_{\theta_n}$.
- 5: Starting from ρ_0 , roll in by executing $\hat{\pi}_n$ on the given MDP to generate K trajectories $\{\tau_i^n\}$.
- 6: Using Q^* and $\{\tau_i^n\}_i$, compute the descent direction δ_{θ_n} (Eq. 10, Eq. 11, Eq. 12, Eq. 13, or CG).
- 7: Update: $\theta_{n+1} = \theta_n \eta_n \delta_{\theta_n}$.
- 8: end for
- 9: **Return:** the best hypothesis $\hat{\pi} \in {\{\pi_n\}}_n$ on validation.

Compare IL and RL

• Suppose an MDP is a tree with $S = 2^{K} - 1$ states, and only leaf have a cost, random sampled from a given distribution.

- RL have the regret $E[R_N] \ge \Omega(\sqrt{SN})$.
- However, IL have the regret $R_N \leq O(\ln S)$ with the optimal Q^* , because it can directly know which way to go.
- In the case that the query of Q^* is noisy, it is proved that AggreVaTeD can achieve the regret bound for the tree MDP with at least 1δ probablity:

$$R_N \leq O(\ln(S)(\sqrt{\ln(S)N}) + \sqrt{\ln(2/\delta)N})$$

• In the general case, with access to an unbiased estimates of Q^* , the algorithm achives the regret upper bound:

$$\mathsf{R}_{\mathsf{N}} \leq O(\mathsf{HQ}^{\mathsf{e}}_{\mathit{max}}\sqrt{|S|\ln(|A|)\mathsf{N}})$$

 Q_{max}^{e} is the largest cost-to-go value of the expert.

• Also, it is proved that there exists an MDP(H=1) that with acccess to the unbiased estimates of Q^* , any imitation learning algorithm have:

$$E[R_N] \ge \Omega(\sqrt{|S|\ln(|A|)N})$$

Experiment1 - Simulations of robots using OpenAl Gym

- Simulations of robots using OpenAI Gym
- Tasks:
 - Cartpole
 - Acrobot
 - Hopper
 - Walker

Figure 2. Performance (cumulative reward R on y-axis) versus number of episodes (n on x-axis) of AggreVaTeD (blue and green), experts (red), and RL algorithms (dotted) on different robotics simulators.

• Parse handwritten algebra from raw image

• RNN policy from (Sutskever et al., 2014) paper

Arc-Eager	AggreVaTeD (LSTMs)	AggreVaTeD (NN)					DAgger	SL (LSTMs)		Random
Regular Natural	0.924±0.10 0.915±0.10	0.851±0.10 0.800±0.10	$\begin{array}{c} 0.826 {\pm}\; 0.09 \\ 0.824 {\pm} 0.10 \end{array}$	$\begin{array}{c} 0.386 {\pm} 0.1 \\ 0.345 {\pm} 0.1 \end{array}$	0.256±0.07 0.237±0.07	$\substack{0.227 \pm 0.06 \\ 0.241 \pm 0.07}$	$0.832{\pm}0.02$	0.813±0.1	0.325±0.2	~0.150

Table 1. Performance (UAS) of different approaches on handwritten algebra dependency parsing. SL stands for supervised learning using expert's samples: maximizing the likelihood of expert's actions under the sequences generated by expert itself. SL-RL means RL with initialization using SL. Random stands for the initial performances of random policies (LSTMs and NN). The performance of DAgger with Kernel SVM is from (Duyck & Gordon, 2015).