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Motivation

Motivation:

Computational results demonstrate that posterior sampling for
reinforcement learning (PSRL) dramatically outperforms existing
algorithms driven by optimism.

Need theoretical proofs about this result

Regret bounds comparison
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Problem Setting:

Problem Setting:

Input: A reinforcement learning algorithm

Target: finite-horizon episodic Markov decision processes

Output: A regret bound
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Previous Solutions

optimism in the face of uncertainty (OFU)

Old bound Õ(HS
√
AT )

H: Horizen, the number of steps within a episode

S : the number of states

A: the number of actions

T : the number of steps

The authors want to improve the bound to Õ(
√
HSAT )

Ian Osband, Benjamin Van Roy (Stanford University)why is posterior sampling better than optimism for reinforcement learning?
ICML, 2017 Presenter: Beilun Wang 7 /

20



Outline

1 Introduction
Motivation
Previous Solutions
Contributions

2 Background
Random finite-horizon MDP

3 Main conclusion

4 Summary

Ian Osband, Benjamin Van Roy (Stanford University)why is posterior sampling better than optimism for reinforcement learning?
ICML, 2017 Presenter: Beilun Wang 8 /

20



Contributions

PSRL is no worse than OFU

PSRL achieves the better Bayesian regret bound Õ(H
√
SAT )
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Definition: Random finite-horizon MDP / Bayesian
reinforcement learning

M = (S,A,R∗,P∗,H, ρ)

The state space S
The Action space A
H is the number of steps within an episode

ρ is the initial state distribution

A new state reward rh ∼ R∗(sh, ah)

A new transition sh+1 ∼ P∗(sh, ah)
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Value function and policy function in Bayesian
reinforcement learning

state-action value function for each period h:

QM
µ,h(s, a) := EM,µ[

H∑
j=h

r̄M(sj , aj)sh = s, ah = a] (1)

where r̄M(s, a) = E[r |r ∼ RM(s, a)]

µ is a policy
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Value function and policy function in Bayesian
reinforcement learning

VM
µ,h(s) := QM

µ,h(s, µ(s, h))

Optimal policy for MDP M: µM ∈ arg max
µ

VM
µ,h(s)

History prior to time t: Ht

skh = st , where t = (k1)H + h.

Hkh = Ht .

An RL algorithm {πk |k = 1, 2, . . . }
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Regret Bound

Regret:

Regret(T , π,M∗) :=

[T/H]∑
k=1

∆k (2)

where
∆k :=

∑
S
ρ(s)(VM∗

µ∗,1(s)− VM∗
µk ,1

(s)) (3)

true MDP M∗

µ∗ = µM
∗
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Bayes Regret

BayesRegret(T , π, φ) := E[Regret(T , π,M∗)|M∗ ∼ φ] (4)
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OFU-RL
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PSRL
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PSRL matches OFU-RL in BayesRegret

If OFU-RL has the regret

Regret(T , πopt,M∗) ≤ f (S ,A,H,T , δ)

Then PSRL has the Bayes regret

BayesRegret(T , πPSRL, φ) ≤ 2f (S ,A,H,T , δ) + 2
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Regret bound improvement

PSRL achieves the better Bayesian regret bound Õ(H
√
SAT )

It is possible to have bound Õ(
√
HSAT ) with additional assumptions

This bound cannot be improved.
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Summary

PSRL is no worse than OFU

PSRL achieves the better Bayesian regret bound Õ(H
√
SAT )
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