why is posterior sampling better than optimism for reinforcement learning?

lan Osband¹ Benjamin Van Roy¹

¹Stanford University

ICML, 2017 Presenter: Beilun Wang

Ian Osband, Benjamin Van Roy (Stanford Unwhy is posterior sampling better than optimis

Introduction

- Motivation
- Previous Solutions
- Contributions

2 Background

• Random finite-horizon MDP

Main conclusion

3

- ∢ ∃ ▶

Introduction

Motivation

- Previous Solutions
- Contributions

Background

• Random finite-horizon MDP

Main conclusion

Summary

3

< 67 ▶

- ∢ ∃ ▶

- ∢ ∃ →

Motivation:

- Computational results demonstrate that posterior sampling for reinforcement learning (PSRL) dramatically outperforms existing algorithms driven by optimism.
- Need theoretical proofs about this result
- Regret bounds comparison

・ 同 ト ・ 三 ト ・ 三 ト

Problem Setting:

- Input: A reinforcement learning algorithm
- Target: finite-horizon episodic Markov decision processes
- Output: A regret bound

Introduction

- Motivation
- Previous Solutions
- Contributions

Background

• Random finite-horizon MDP

Main conclusion

4 Summary

3

- ∢ ∃ ▶

< A > < > > <

- optimism in the face of uncertainty (OFU)
- Old bound $\tilde{O}(HS\sqrt{AT})$
- H: Horizen, the number of steps within a episode
- S: the number of states
- A: the number of actions
- *T*: the number of steps
- The authors want to improve the bound to $\tilde{O}(\sqrt{HSAT})$

Introduction

- Motivation
- Previous Solutions
- Contributions

Background

• Random finite-horizon MDP

Main conclusion

Summary

3

- ∢ ∃ ▶

< A > < > > <

- PSRL is no worse than OFU
- PSRL achieves the better Bayesian regret bound $\tilde{O}(H\sqrt{SAT})$

- 문

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

- Motivation
- Previous Solutions
- Contributions

2 Background

• Random finite-horizon MDP

Main conclusion

4 Summary

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition: Random finite-horizon MDP / Bayesian reinforcement learning

- $M = (S, A, R^*, P^*, H, \rho)$
- The state space ${\mathcal S}$
- The Action space \mathcal{A}
- H is the number of steps within an episode
- ρ is the initial state distribution
- A new state reward $r_h \sim R^*(s_h, a_h)$
- A new transition $s_{h+1} \sim P^*(s_h, a_h)$

Value function and policy function in Bayesian reinforcement learning

• state-action value function for each period *h*:

$$Q^{M}_{\mu,h}(s,a) := \mathbb{E}_{M,\mu}[\sum_{j=h}^{H} \bar{r}^{M}(s_{j},a_{j})s_{h} = s, a_{h} = a]$$
(1)

• where
$$\bar{r}^M(s,a) = \mathbb{E}[r|r \sim R^M(s,a)]$$

• μ is a policy

Value function and policy function in Bayesian reinforcement learning

- $V^{M}_{\mu,h}(s) := Q^{M}_{\mu,h}(s,\mu(s,h))$
- Optimal policy for MDP M: $\mu^M \in \arg \max_{\mu,h} V^M_{\mu,h}(s)$
- History prior to time $t: \mathcal{H}_t$
- $s_{kh} = s_t$, where t = (k1)H + h.
- $\mathcal{H}_{kh} = \mathcal{H}_t$.
- An RL algorithm $\{\pi_k | k = 1, 2, \dots\}$

• Regret:

$$\operatorname{Regret}(T, \pi, M^*) := \sum_{k=1}^{[T/H]} \Delta_k$$
(2)

$$\Delta_k := \sum_{\mathcal{S}} \rho(s) (V_{\mu^*,1}^{M^*}(s) - V_{\mu_k,1}^{M^*}(s))$$
(3)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ― 臣

- true MDP M^*
- $\bullet \ \mu^* = \mu^{M^*}$

$\mathsf{BayesRegret}(T, \pi, \phi) := \mathbb{E}[\mathsf{Regret}(T, \pi, M^*) | M^* \sim \phi]$ (4)

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Algorithm 1 OFU RL

Input: confidence set constructor Φ

1: **for** episode
$$k = 1, 2, ...$$
 do

2: Construct confidence set $\mathcal{M}_k = \Phi(\mathcal{H}_{k1})$

- 3: Compute $\mu_k \in \operatorname{argmax}_{\mu,M \in \mathcal{M}_k} V^M_{\mu,1}$
- 4: **for** timestep h = 1, .., H **do**
- 5: take action $a_{kh} = \mu_k(s_{kh}, h)$
- 6: update $H_{kh+1} = \mathcal{H}_{kh} \cup (s_{kh}, a_{kh}, r_{kh}, s_{kh+1})$
- 7: end for

8: **end for**

・ 同 ト ・ ヨ ト ・ ヨ ト …

Algorithm 2 PSRL

Input: prior distribution ϕ

- 1: **for** episode k = 1, 2, ... **do**
- 2: Sample MDP $M_k \sim \phi(\cdot | \mathcal{H}_{k1})$
- 3: Compute $\mu_k \in \operatorname{argmax}_{\mu} V_{\mu,1}^{M_k}$
- 4: **for** timestep h = 1, .., H **do**
- 5: take action $a_{kh} = \mu_k(s_{kh}, h)$
- 6: update $H_{kh+1} = \mathcal{H}_{kh} \cup (s_{kh}, a_{kh}, r_{kh}, s_{kh+1})$
- 7: **end for**

8: **end for**

- If OFU-RL has the regret
- Regret $(T, \pi^{opt}, M^*) \leq f(S, A, H, T, \delta)$
- Then PSRL has the Bayes regret
- BayesRegret $(T, \pi^{\mathsf{PSRL}}, \phi) \leq 2f(S, A, H, T, \delta) + 2$

- PSRL achieves the better Bayesian regret bound $\tilde{O}(H\sqrt{SAT})$
- It is possible to have bound $\tilde{O}(\sqrt{HSAT})$ with additional assumptions
- This bound cannot be improved.

伺 ト イヨト イヨト

- PSRL is no worse than OFU
- PSRL achieves the better Bayesian regret bound $\tilde{O}(H\sqrt{SAT})$

- 문

イロン イ団と イヨン トラン