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Definition

Take the things were most interested in achieving and apply to
computation

Apply probability theory to numerics (computation cores)
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Learning Algorithms

Use numeric functions as learning algorithms

Idea is to use Bayesian probability theories
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Rosenbrock
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Rosenbrock

Easy to graph on a computer

No easy way of finding its global minimum since it lies in a flat
parabolic region

Minimum f (x , y) = 0 when (x , y) = (1, 1)

Reason: computational limits from the optimization problem
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Uncertainty

Epistemically uncertain about the function due to being unable to
afford computation

Probabilistically model function and use tools from decision theory to
make optimal use of computation
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Probability

Probability is an expression of confidence in a proposition

Probability theory can quantify inverse of logic expression

Depends on the agent’s prior knowledge
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Gaussian Distribution

Allows for distributions for variables conditioned on any other
observed variables.

Multivariate Gaussian Distribution:

1√
det(2πΣ)

e−
1
2

(x−µ)′Σ−1(x−µ)

µ is mean

Σ is covariance matrix
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Gaussian Process

Gaussian Process is a collection of random variables that any finite
subset of the variables has a multivariate Gaussian distribution.

Defined by mean and covariance function.

Generalizes to potentially infinite number of variables.
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Kernels/Covariance Function

Squared exponential kernel:

KSE (x1, x2) = Aexp(−1

2

∑
d∈D

(x1d − x2d)2

hd
)

A the signal variance matrix, describes variation from the mean

hd the lengthscale, describes smoothness
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Kernels/Covariance Function

Matern kernel:

KMatern(3/2)(x1, x2) = A(1 +
√

3r)exp(−
√

3r)

KMatern(5/2)(x1, x2) = A(1 +
√

5r +
5

3
r2)exp(−

√
5r)

A the signal variance matrix, describes variation from the mean

r =
√∑

d∈D
(x2d−x1d )2

hd

hd the lengthscale, describes smoothness
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Mean

Posterior estimates:

m(x |D) =
1

K

K∑
k=0

m(x |D, λk)

K number of draws of the hyperparameter values that have been
made by slice sampling

λ prior data observed
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Gaussian Process

Complexity that grows with data

Robust to overfitting
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Gaussian Process
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Gaussian Process
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Bayesian Optimization

Bayesian optimization is the approach of probabilistically modelling
f (x , y) and using decision theory to make optimal use of computation

By defining the costs of observation and uncertainty, we can select
evaluations optimally by minimizing the expected loss with respect to
a probability distribution

Representing the core components: cost evaluation and degree of
uncertainty
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Acquisition Function

Acquisition Function α(x) quantifies how valuable evaluating at x is
expected to be

Evaluated on the GP rather than the objective.

Since working on GP is less costly, can find its global maximum and
use the point as the next evaluation of the objective function.
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Entropy Search AF

Optimization is viewed as gaining knowledge about the location of
the global minimum.

Prior belief about the location of the global minimum of the objective
is represented as a probability distribution p(x∗). The probability that
x∗ = argminx f (x)

Selects points to maximize the relative entropy of this distribution
from the uniform distribution:

xn+1 = argmaxx(H[p(x∗|Dn)]− Ex∗ [H[p(x∗|Dn, x , y)]])

H[p] = −
∑

i pi logpi entropy
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Predictive Entropy Search

The acquisition function α(x) is the expected information gain about
the value at xn+1 given a true observation of the global minimum:

α(xn+1) = H[yn+1|Dn, xn+1]− H[yn+1|Dn, xn+1, x∗]
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Loss

loss function - lowest function value found after algorithm ends

Take a myopic approximation and consider only the next evaluation

The expected loss is the expected lowest value of the function we’ve
evaluated after the next iteration
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Myopic Loss

Consider only with one evaluation remaining, the loss of returning value y
with current lowest value µ
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Expected Loss

Expected loss is the expected lowest value
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Expected Loss

Use a Gaussian process as the probability distribution for the objective
function
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Expected Loss

Exploitative step
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Expected Loss

Exploratory step
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Noise

Using only a subset of the data gives a noisy likelihood evaluation

Use Bayesian optimization for stochastic learning
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Noise

Within Bayesian Optimization noise is not a problem

If additional noise in the random variable we can just add a noise
likelihood to complement model

Encode that cost as a function of the number of data

Intelligently choose the size of data that it needs at runtime to best
optimization
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Bayesian Optimization

Batch size
Klein, Falkner, Bartels, Hennig, Hutter (2017);
McLeod, Osborne, Roberts (2017)
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Integration

Normally we want integration rather than optimization

Average over the calculated parameters and functions by their
likelihoods

Reduces uncertainty of calculated functions

Uses Bayesian quadrature for numerical integration
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Model

Propagates uncertainty
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Model

Converges
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Papers
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