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Take home message of the video

@ Mathematical Model + Predictions = Theory
@ Theory can help practice, empirical work, inspires theory work

@ RL # Supervised Learning

e Batch learning
o When you have a simulator: fitted value iteration
e Online: Bandit

@ VC dimension
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What is a “theory” (for us)?

*Models
* Mathematical
*Predictions

*.. about how things will turn out to be; aka
performance “bounds”
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What to predict?

*A priori analysis:
How well a learning alg. will perform on
new data

*A posteriori analysis:
How well is a learning alg. doing on some
data? Quantify uncertainty left
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Two fundamental results in SLT

*Fundamental theorem of SLT

*The computational complexity of learning
linear classifiers
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The fundamental theorem of SLT

: In binary classification, to match
the loss of best hypothesis in class H up to

VC(H
accuracy €, one needs O( ( .

)

observations.
-

o\l
*Pure information theory, “ERM”
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Computational complexity

: Unless NP=RP, linear classifiers
(hyperplanes!) cannot be learned in
polynomial-time.




RP (complexity)

In computational complexity theory, randomized polynomial time (RP) is
the complexity class of problems for which a probabilistic Turing machine
exists with these properties:

@ It always runs in polynomial time in the input size
o If the correct answer is NO, it always returns NO

o If the correct answer is YES, then it returns YES with probability at
least 1/2 (otherwise, it returns NO).

RP algorithm (1 run)
Answer produced

Correct Yes No
answer
Yes =1/2 | =s1/2
No 0 1

P is a subset of RP, which is a subset of NP
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Batch Rineforcement Learning

o differing from the RL, in the batch learning problem the agent itself is
not allowed to interact with the system during learning.

@ Instead of observing a state s, trying an action a and adapting its
policy according to the subsequent following state s’ and reward r,
the learner only receives a set F = {(s¢, ar, re+1, St+1)|t = 1, ..., p} of
p transitions (s, a, r, s’) sampled from the environment.

@ In the most general case of this batch reinforcement learning problem
the learner cannot make any assumptions on the sampling procedure
of the transitions. They may be sampled by an arbitraryeven purely
randompolicy; they not even be sampled along connected trajectories.
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Batch Reinforcement Learning

@ During this application phase the policy is fixed and not further
improved as new observations come in.

@ Since the learner itself is not allowed to interact with the
environment, and the given set of transitions is usually finite, the
learner cannot be expected to always come up with an optimal policy.

@ The objective has therefore been changed from learning an optimal

policyas in the general reinforcement learning caseto deriving the best
possible policy from the given data.
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Batch RL: The learning problem

*Data:
* (X, Ap, Yy, RN, iid where
Xe ~ A ~ 7 |Xe), Ve ~ PAt('lxt)r
Ry =1(Xp, Ap, 1),
*H: horizon
*I1: class of policies

*Goal: Find e-optimal policy in II.
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transitions
(s,ans)

1. Exploration 2. Learning 3. Application

Fig. 1 The three distinct phases of the batch reinforcement learning process: 1: Collecting tran-
sitions with an arbitrary sampling strategy. 2: Application of (batch) reinforcement learning algo-
rithms in order to learn the best possible policy from the set of transitions. 3: Application of the
learned policy. Exploration is not part of the batch learning task. During the application phase, that
isn’t part of the learning task either, policies stay fixed and are not improved further.
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Batch RL and supervised learning

*Corollary 1: For H = 0, batch RL is “cost sensitive
classification” (CSS) with cost —r(x, a) at input
x and “label” a and “hypothesis class” II.

* Corollary 2: The “Batch RL” learning problem is at
least as hard as CSS
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Obviously, the distribution of transitions in the provided batch must
resemble the true transition probabilities of the system in order to
allow the derivation of good policies.

The easiest way to achieve this is to sample the training examples
from the system itself, by simply interacting with it.

But when sampling from the real system, another aspect becomes
important: the covering of the state space by the transitions used for
learning.

If important regions, e.g. states close to the goal stateare not covered
by any samples, then it is obviously not possible to learn a good
policy from the data, since important information is missing.
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Fitted Value lteration

..when you have a simulator

..anyone wants to play Atari games?
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Fitted Value lteration

Value Iteration

Value iteration computes the optimal state value function by iteratively
improving the estimate of V(s). The algorithm initialize V(s) to arbitrary
random values. It repeatedly updates the Q(s, a) and V(s) values until they
convergs. Value iteration is guranteed to converge to the optimal values. This
algorithm is shown in the following pseudocode:

Initialize V (s) to arbitrary values
Repeat

Foralls e §
Forallae A
Q(s,a) — E[r|s,al +y > ¢cs P(s'|s,a)V(s")
V(s) — maxg Q(s,a)
Until V(s) converge

Pseudo code for value-iteration algorithm. Credit: Alpaydin Introduction to Machine Learning, 3rd edition.
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Fitted Value lteration

@ The value function represent how good is a state for an agent to be in.

@ Value Iteration works well if the number of states is small. The reason
for this is that we have to be able to represent our approximation V/
as a single n x 1 vector, where n is the number of states. However,
the number of states is large or infinite, making this infeasible or

impossible.
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Fitted Value lteration

A

In this case, we need a different way of representing our approximation V ,
which meets the following requirements:
@ The approximation should be able to be computed given a small
subset of the total number of states.
@ The approximation should be easily extended to new states which
were not part of the training set.
@ For many applications, we need this extension to be quickly
computable.
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Fitted Value lteration

One approach to this is to use a linear approximation, in which \7(5) is set
equal to a weighted sum of features.

Suppose we have n sampled states and k features. We can arrange these feature values into a matrix, ®,

where
é1(s1) da(s1) ... dk(s1)
é1(s2) da(s2) ... di(s2)

. . . s

Q: . -
61(52) balsm) ... Ox(sn)

and the weights are stored in a & x 1 vector w:
wy

Wk

Now, we can say that V = ®w, capturing that V(s) = ZLI @;i(s)w;. Once you have w, it’s very easy
to find the value of new states; you just calculate the feature values of that new state (what the row of ®
corresponding to that state would look like), and do the weighted sum.
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Fitted Value lteration

But how do we find w? Suppose we have a vector b that we would like to approximate using a linear
approximation, so that ®w =~ b. Consider the following steps:

dw =b
(070) ' 2Tow = (a7®) " 2Th
—_—
w=(a7®) 2T p
—_—

You’ll notice on the second step, the underbraced portion is noted as equal to I, the multiplicative identity
matrix. This is because A~'A = I for any invertible matrix A.

You’ll notice on the third step that (<I>T<I>)_1 ®T is labelled as II, or the projection operator. This is
because it projects b into the space defined by ®. This is one way to calculate w.
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Input: F — function space, N, M, K integers, u — distribution
over the state space.
Algorithm (stage k):
@ Sample “basis points™: Xj,...,. Xy € X, Xi ~ i
© For each action a € A and state X;, sample next states and
rewards: Y% ~ P([X;,a), "% ~ S(X;,a),j =1,...,M
© Calculate the Monte-Carlo approximation of backed up
values:

<

_ 1 X;.a Xay]
Vv = Teaf)t(ﬁjﬂ [Rj +ka(Yj )} , i=1,2,...,N.
O Solve the least-squares problem:
Vi1 = argmingezy S04 (F(x0) — vi)?
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Fitted Value lteration

..no simulator, no pain..? Uh..no..

When things became “real”
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Fitted Value lteration

Defining online learning

*Interact with “real” system
*Collect as much reward as possible!

*Performance metric:
*Total reward collected, or..
*Regret: Difference to baseline (normalizing)

*PAC-MDP: not covered
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Fitted Value lteration

Why should you care?

* Alternative: Model-based RL
* Learn a model & use planning (see
previous part)
* Problems with model-based RL:
* Models can be too expensive to build
* Uncontrolled model inaccuracies may lead
to poor behavior

* Opportunity: Online learning can be cheaper
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@ In VapnikChervonenkis theory, the VC dimension is a measure of the
capacity (complexity, expressive power, richness, or flexibility) of a
space of functions that can be learned by a statistical classification
algorithm.

@ Given a classifier X , if X can classify a pattern with n numbers of
points in space with all possible labels(2" , for (+ and -) two label)
then n is VC dimension of X.
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VC dimension
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VC dimension
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Are larger VC dimensions good?

@ So we would want a function family with a high VC dimension, right?

@ What we eventually want is that our model predicts well. This
eventual performance is denoted by a quantity called Risk, and it is
bounded thus:

o Risk = EmpiricalRisk + f(h)
@ The Empirical Risk is the classification error you obtain on our

training set. The second term f(h), is a function that increases with
the VC dimension.
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