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Reinforcement Learning

RL provides a general-purpose framework for making decisions

RL is about learning to act
Each action can alter the state of the world, and can result in reward
Goal: optimize future rewards (which may be internal to the agent)

Used on problems that involve making decisions and/or making
predictions about the future
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Approaches to reinforcement learning

The goal is to learn a policy of behaviour

(At least) three possibilities:

Learn policy directly
Learn values of each action - infer policy by inspection
Learn a model - infer policy by planning

Agents therefore typically have at least one of these components:

Policy - maps current state to action
Value function - prediction of value for each state and action
Model - agents representation of the environment.
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Policy
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Value Function
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Optimal Value Function
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Reinforcement learning Components

Policy: π(s) = a

Value: Q(s, a) ≈ E[Rt+1 + Rt+1 + ...|St = s,At = a]

Model: m(s, a) ≈ E[St+1|St = s,At = a]

→ We need to represent and learn these functions

Hado van Hasselt Deep Reinforcement Learning Lecture Presenter: Jack Lanchantin 9 / 23



Approaches to RL
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Deep reinforcement learning

Use deep learning to learn policies, values, and/or models to use in a
reinforcement learning domain

Reinforcement learning provides: a framework for making decisions

Deep learning provides: tools to learn the components
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Q-learning

Q-learning: A algorithm to learn values

The optimal value function fulfills:

Q∗(s, a) = E[Rt+1 + maxa′Q
∗(s ′, a′)| s, a ] (1)

i.e. the value of the policy that will get you the most reward

We can turn this into a temporal difference algorithm

Qt+1(St ,At) = Qt(St ,At)+α
(
Rt+1 + γmaxaQt(St+1, a)−Qt(St ,At)

)
(2)
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Q-learning

By learning off-policy about the policy that is currently greedy,
Q-learning can approximate the optimal value function Q∗

With Q∗ we have an optimal policy: π∗(s) = argmaxQ∗(s, .)
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Deep Q Network (Mnih et al., Nature 2015)

Learns to play video games by simply playing and observing rewards

Can learn the Q function by Q-learning

∆w = α
(
Rt+1 + γmaxaQ(St+1, a;w)−Q(St ,At ;w)

)
∇wQ(St ,At ;w)
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Target Networks

Changing the value of one action will change the value of other
actions and similar states

The network can end up chasing its own tail because of bootstrapping

Solution: freeze the weights in the target network for K number of
update steps

∆w = α
(
Rt+1 + γmaxaQ(St+1, a;w−)− Q(St ,At ;w)

)
∇wQ(St ,At ;w)
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Experience Replay

Replay previous tuples (s,a,r,s’) which the agent has seen before

Benefits:

More data efficient
Learning resembles supervised learning more (which deep learning
works well on)

Replay can be sampled in specific ways, e.g. replay transitions in
proportion to absolute Bellman error:

|r + γmaxa′Q(S ′, a′,w)− Q(s, a,w)| (3)
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Double DQN (van Hasselt et al. 2015)

DQN:

∆w = α
(
rt+1 + γmaxa′Q(s ′, a′;w−)− Qt(s, a;w)

)
∇wQ(s, a;w)

= α
(
rt+1 + γQ(s ′, argmaxa′Q(s ′, a′;w−);w−)− Qt(s, a;w)

)
∇wQ(s, a;w)

Double DQN:

∆w = α
(
rt+1+γQ(s ′, argmaxa′Q(s ′, a′;w);w−)−Qt(s, a;w)

)
∇wQ(s, a;w)

Main Idea: decorrelate selection and evaluation to mitigate overestimation
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Policy Gradient

We can often do better if the policy is differentiable (optimize the
performance with SGD).

Represent policy by deep network with weights θ: a = π(a|s, θ)
Adjust policy parameters θ to achieve more reward

Goal: compute gradient of the following objective:

∇θJ(θ) = ∇θE[r1 + γr2 + γ2r3 + ...|π(·, θ)] (4)

Problem: rewards aren’t differentiable → estimate the gradient
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Policy Gradient Theorem

For all differentiable policies (where expectation is over all states and
actions):

∇θJ(θ) = E[∇θlogπθt (a|s)Qπ(s, a)] (5)

there is an easy sample-based approximation (REINFORCE):

∇θlogπθt (at |st)Gt

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...

Update parameters:

θt+1 = θt + αRt+1∇θlogπθt (at |st)Gt (6)
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Practical Deep Policy Gradient

How can policy-based methods be implemented efficiently with neural
networks?

DQN uses replay, but standard PG methods are on-policy

Good off-policy PG methods have since been developed: ACER (Wang
et al., 2016) and PGQL (ODonoghue et al., 2016)
Idea: sample from replay, but adapt the updates so that expected
gradient looks as if we use the current policy
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Conclusion

RL: general framework for learning how to act in an environment

DL: tool to learn the policy of how to act (either through value or
policy iteration)
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