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Reinforcement Learning

@ RL provides a general-purpose framework for making decisions
e RL is about learning to act
o Each action can alter the state of the world, and can result in reward
o Goal: optimize future rewards (which may be internal to the agent)

observation

@ Used on problems that involve making decisions and/or making
predictions about the future
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Approaches to reinforcement learning

@ The goal is to learn a policy of behaviour
o (At least) three possibilities:

e Learn policy directly
o Learn values of each action - infer policy by inspection
o Learn a model - infer policy by planning

@ Agents therefore typically have at least one of these components:

e Policy - maps current state to action
e Value function - prediction of value for each state and action
o Model - agents representation of the environment.
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» A policy is the agent’s behaviour

» It is a map from state to action:
» Deterministic policy: a = n(s)
» Stochastic policy: 7(a|s) = P[als]
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Value Function

» A value function is a prediction of future reward

» “How much reward will | get from action a in state s7"
» @-value function gives expected total reward

» from state s and action a

» under policy

» with discount factor y

Q™(s,a) =E[rep1 +vrer2 + 7 ress + . | 5, 4]

» Value functions decompose into a Bellman equation

Q7(s,a) = Eg .o [r +7Q7(s',d) | s, 4]
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Optimal Value Function

» An optimal value function is the maximum achievable value
Q*(s,a) = max Q™(s,a) = Q" (s, a)
T
» Once we have Q* we can act optimally,
7*(s) = argmax Q*(s, a)
a
» Optimal value maximises over all decisions. Informally:
Q(5,3) = res1 + 7 max reyp + 7% Max reps + ...
dr+1 ar4+2
= fr41+7y max Q*(st41,ar+1)
t+1

» Formally, optimal values decompose into a Bellman equation

Q*(s,a) =Eg |r+v max Q°(s',d) | s,a
a
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Reinforcement learning Components

@ Policy: m(s) = a
e Value: Q(s,a) = E[Rt11 + Riy1 + -..|St =5, At = 4]
e Model: m(s,a) = E[S;11|S: = s, Ar = a]

— We need to represent and learn these functions
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Approaches to RL

Value-based RL

» Estimate the optimal value function Q*(s, a)

» This is the maximum value achievable under any policy
Policy-based RL

» Search directly for the optimal policy 7*

> This is the policy achieving maximum future reward
Model-based RL

» Build a model of the environment

» Plan (e.g. by lookahead) using model
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Deep reinforcement learning

Use deep learning to learn policies, values, and/or models to use in a
reinforcement learning domain

@ Reinforcement learning provides: a framework for making decisions

@ Deep learning provides: tools to learn the components
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Q-learning: A algorithm to learn values

@ The optimal value function fulfills:
Q*(s,a) = E[Rer1 + maxy Q*(s',d)|s, a] (1)

i.e. the value of the policy that will get you the most reward

@ We can turn this into a temporal difference algorithm

QRe+1(St; At) = Qe(St, At)-l-Oé(RH—l + ymaxa Qe (St11, a) — Q:(S, At))
(2)
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@ By learning off-policy about the policy that is currently greedy,
Q-learning can approximate the optimal value function Q*

e With Q* we have an optimal policy: 7*(s) = argmaxQ*(s,.)
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Deep Q Network (Mnih et al., Nature 20

@ Learns to play video games by simply playing and observing rewards

@ Can learn the Q function by Q-learning

Aw = a(Rt+1 +’Ym3XaQ(5t+1, a, W) - Q(Sn At W))VWQ(5t7 At; W)
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Target Networks

@ Changing the value of one action will change the value of other
actions and similar states

@ The network can end up chasing its own tail because of bootstrapping

@ Solution: freeze the weights in the target network for K number of
update steps

Aw = a(Rep1 +vmaxaQ(Ses1, @ w ) — Q(St, Ar; w)) Vi Q(St, Ar; w)
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Experience Replay

@ Replay previous tuples (s,a,r,s") which the agent has seen before
o Benefits:

e More data efficient
o Learning resembles supervised learning more (which deep learning
works well on)

@ Replay can be sampled in specific ways, e.g. replay transitions in
proportion to absolute Bellman error:

|r +ymaxy Q(S',a', w) — Q(s, a, w)| (3)
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Double DQN (van Hasselt et al. 2015)

DQN:
Aw = a(rt+1 + 'ymaxa/Q(s’, a- w) — Q(s, a; W))VWQ(S, a,w)

= a(rey1 +7Q(s, argmaxy Q(s', a's w™ ) w™) — Qi(s, 3 w)) Vi Q(s, a5

Double DQN:

Aw = a(rt+1+vQ(s’, argmaxa/Q(s’, a: w); w)—Q(s, a; W))VWQ(S, a;,w)

Main Idea: decorrelate selection and evaluation to mitigate overestimation
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Policy Gradient

@ We can often do better if the policy is differentiable (optimize the
performance with SGD).

o Represent policy by deep network with weights 6: a = 7(als, 0)
e Adjust policy parameters 6 to achieve more reward

@ Goal: compute gradient of the following objective:
VoJ(0) = VoE[r1 +vr2 +7%r3 + .| (-, 0)] (4)

@ Problem: rewards aren't differentiable — estimate the gradient
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Policy Gradient Theorem

e For all differentiable policies (where expectation is over all states and

actions):
VoJ(0) = E[Vglogmy,(als)Q™ (s, a)] (5)

there is an easy sample-based approximation (REINFORCE):

Vologmy,(at|st) Gt

Gt = Rey1+YRey2 + 7’ Regs + ...
Update parameters:

Ot41 = 0t + aR:{1Vglogmg,(at|st) Gt (6)
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Practical Deep Policy Gradient

@ How can policy-based methods be implemented efficiently with neural
networks?
@ DQN uses replay, but standard PG methods are on-policy
e Good off-policy PG methods have since been developed: ACER (Wang
et al., 2016) and PGQL (ODonoghue et al., 2016)
o ldea: sample from replay, but adapt the updates so that expected
gradient looks as if we use the current policy
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Conclusion

@ RL: general framework for learning how to act in an environment

e DL: tool to learn the policy of how to act (either through value or
policy iteration)
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