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@ Generative models produce data - attempt to match ground truth
distribution
e How can we distinguish real from generated data?
e How to train generator network?
@ Proposal: use Maximum Mean Discrepancy (MMD) to distinguish
distributions
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Divergences

@ Comparison of two probability distributions
o Kullback-Leibler (KL)

DalPlI9) =~ 3 Pl

@ Jensen-Shannon
1 1
JSD(PI|Q) = 5 KL(PIIM) + 5 KL(Q|IM)

1
M= E(P + Q)
o Integral probability metrics

e Witness function distinguishes P from @
o Includes MMD
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Maximum Mean Discrepancy

@ Definition

MMDE(P, Q) = Ex [k(x, X')] + By, [k(y, y')] = 2Exy[k(x,y)]

o Estimate
MMDy’ (P Zk X, X!) Zk
J#J 176"
2
Y k(X, Y))
(2) i#j
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© Background

@ Test Power
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@ Power: probability of rejecting Hy given that Hy is true
@ Measure of effectiveness of hypothesis
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Hypothesis Test

e Hy: P=Q
o H: P#Q
MMDy (X, V) — MMD2(P, Q) P

N(0.1
T P.Q) 1)

—2
—2 o MMDy(X,Y) — MMD?(P, Q) _ ¢q/m — MMD2(P, Q)
Pry (mMMDU(X.}) > LQ) =P ( ) > X )

MMD?(P, Q) Ca
o - 4
- ( VVn(P.Q) m\/v;xP.Q)) (
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t-statistic

o Hy: P=Q,H : P#Q
tx(P,Q) := MMD2(P,Q)/\/ Vi (P, Q)
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t-statistic

o Hy: P=Q,H : P#Q
tx(P,Q) := MMD2(P,Q)/\/ Vi (P, Q)
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Optimization

@ CPU cache optimization, multithreading

@ Improved performance over Intel MKL spectral solver
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Synthetic Data

@ Bandwidth selection for Gaussian RBF kernels - Blobs dataset
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(b) Bandwidths chosen by maximiz-

ing m% (top, blue) and { (bottom,

green), as well as the median heuristic
(a) Samples of size 500 (red), for ¢ = 6. Gray lines show the
with ¢ = 6 from P power of each bandwidth: o = 0.67
(top) and @ (bottom).  had power 96%, o = 10 had 10%.
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(c) Mean and standard deviation of rejection
rate as € increases. “Best choice” shows the
mean power of the bandwidth with highest
rejection rate for each problem.

e Optimizing f better than optimizing MMD
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Model Criticism

@ Automatic relevance determination (ARD) kernel - MNIST

103

dataset images
GAN samples
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(a) Dataset samples.

=

(b) GAN samples.

;Z <— more like GAN more like dataset —
i MMD? =0.0001
] ¢ (d) The witness function E,p k(z,-) — Eyvq k(y, -) evaluated on a test
(c) ARD weights. set. Images are shown with ARD weights highlighted. Vertical lines show

distribution means; the distance between them is small but highly consistent.
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@ Experiments

o GAN
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GAN

@ Generative moment matching network (GMMN) uses MMD
o t-GMMN - minimizes t-statistic

EEEEEE
3|ONE =28 |
124832y s8 5052197509949 9|9
239 IEIIIEE EENHCE EEEEEE
M BLORRE] ConEes ) )
III BEIEGN EEEEER

(a) GMMN (b) t-GMMN

(c) Feature matching (d) Improved GAN

Figure 4: MNIST digits from various models. Part d shows six runs of the minibatch discrimination
model of Salimans et al. (2016), trained without labels — the same model that, with labels, generated
Figure 3b. (The third row is the closest we got the model to generating digits without any labels.)
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o MMD is a divergence metric

@ Constructed MMD optimization t-test
@ Propose MMD t-test as tool for GANs

o Model criticism
o GAN optimizer
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