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Definition

RNNs have become the generative models of choice for sequential
data.

Decomposes distribution over the discrete time sequence y1, y2, ..., yT

P(y1, y2, ...yT ) = P(y1)
∏T

t=1 P(tt |y1, ..., yt−1)
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Problem

So far RNNs show poor generating performance especially for longer
sequences

The training behavior and generating behavior do not match

A slight error in the probability can compound into large differences
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Past Solutions

Teacher Forcing: feed ground-truths back into model to keep model
close to ground-truth sequences
Problem: small prediction errors away from ground-truth values lead
to behavior divergence
Williams and Zipser, 1989

Scheduled Sampling Method: mix ground-truth and generated
sequences for training
Problem: With more generated sequences the model is not clear that
the correct target is the ground-truth
Bengio et al., 2015

Also found that Scheduled Sampling Method yields a biased estimator
Huszr 2015
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Contributions

Professor Forcing method to train RNNs. Use 2 networks

Improves long sequence sampling for RNNs

Acts as a regularizer for RNNs

Mixes the hidden states when doing sampling and teacher forcing

Better generates samples longer than those used during training
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Overview

Uses 2 neural networks:

Generator RNN: switches between Teacher Forcing and Free Running
modes and pass behavior values
Discriminator: determines if the passed hidden states comes from
teacher forcing or free running modes
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Model
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Generative RNN

the generative RNN has a single hidden layer of gated recurrent units
(GRU), chosen because they are cheaper computationally than LSTM

behavior function B outputs the pre-tanh activation of the GRU
states, and optionally the softmax outputs for the next-step prediction
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Discriminator

discriminator is based on either a bidirectional RRN with GRUs or a
CNN

hidden states concatenate and fed to a 3-layer neural network

each layer has an affine transformation and a ReLU

output layer has an affine transformation and a sigmoid
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Definitions

(x , y) input and

For teach forcing, y is the ground-truth from a training sequence
For free running, y is self-generated by the generator in respect to
Pθg (y |x)

θg parameters of the generative RNN

θd parameters of the discriminator

B(x , y , θg ) outputs the behavior sequence b (chosen hidden states
and output values) given data

D(b) the output of the discriminator which estimates of probability
that b was generated in teach forcing mode
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Discriminator

Maximize the likelihood of correctly classifying a behavior sequence.

Cd(θd |θg ) = E(x ,y)∼data[− logD(B(x , y , θg ), θd)

+ Ey∼Pθg (y |x)[−log(1− D(B(x , y , θg ), θd))]
(1)

Alex Lamb Anirudh Goyal Ying Zhang Saizheng Zhang Aaron Courville Yoshua Bengio ( Universitye de Montreal )Professor Forcing: A New Algorithm for Training Recurrent Networks
29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain 17

/ 34



Generator RNN

Maximize the likelihood of the data using a negative log-likelihood
objective.

NLL(θg ) = E(x ,y)∼data[−logPθg (y |x)] (2)
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Generator RNN

Fool the discriminator by changing the free running behavior so it matches
with the teacher forced behavior.

Cf (θg |θd) = Ex∼data,y∼Pθg (y |x)[−logD(B(x , y , θg ), θd)] (3)

Or additionally ask the teacher forced behavior to be indistinguishable
from the free running behavior

Ct(θg |θd) = E(x ,y)∼data[−log(1− D(B(x , y , θg ), θd))] (4)
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Update

Perform SGD steps on NLL + Cf or on NLL + Cf + Ct to update the
generative RNN

Perform SGD on Cd to update the discriminator
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Character-Level Language Modeling

character-level language modeling on Penn-Treebank corpus

evaluated by bits-per-character (BPC)

cost of Professor Forcing decreases faster compared to Teacher
Forcing

training time is 3 times slower than Teacher Forcing

BPC on validation set using baseline is 1.50 while using PF is 1.48
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Sequential MNIST

sequentially generating the pixels in MNIST digits

standard binarized MNIST dataset

used convolutional network for the discriminator instead of
bi-directional RNN
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Sequential MNIST
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T-SNE Visualization

t-distributed stochastic neighbor embedding

Alex Lamb Anirudh Goyal Ying Zhang Saizheng Zhang Aaron Courville Yoshua Bengio ( Universitye de Montreal )Professor Forcing: A New Algorithm for Training Recurrent Networks
29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain 27

/ 34



Handwriting Generation

test if Professor Forcing could to sampling much longer sequences
than those use during trainining

train on only 50 steps of text-conditioned handwriting which
correlates to only a few letters

sample for 1000 time steps

use IAM-OnDB dataset

performed human evaluation for quality
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Handwriting Generation
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Music Synthesis on Raw Waveforms

vocal synthesis on raw waveforms

used 3 hours of monk chanting audio from YouTube
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Conclusion

discriminator spot the differences in behavior of these 2 modes

discriminator look at the statistics of the behavior and not just at the
single-step predictions

forces generator to behave the same when constrained by data and
when generating outputs

better generalization over sequences that are much longer than the
training sequences

generalize better in log-likelihood suggests it acts like a regularizer
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