Mollifying Networks

Caglar Gulcehre! Marcin Moczulski? Francesco Visin3 Yoshua Bengio !

1University of Montreal,
2University of Oxford,

3Politecnico di Milano

ICLR,2017
Presenter: Arshdeep Sekhon & Beilun Wang

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

Reviews

@ https://openreview.net/forum?id=r1G4z8cge

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

https://openreview.net/forum?id=r1G4z8cge

Outline

@ Introduction
@ Motivation

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

@ DNNs: highly non-convex nature of loss function

@ tanh and sigmoid are difficult to optimize.

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

Outline

@ Introduction

@ Previous Studies

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

Previous Studies

A number of recently proposed methods to make optimization easier:
@ curriculum learning
@ training RNNs with diffusion

© noise injection

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

Simulated Annealing

@ See the wiki:
https://en.wikipedia.org/wiki/Simulated_annealing

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

https://en.wikipedia.org/wiki/Simulated_annealing

Outline

© Method
@ Proposed Method

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

Key ideas

@ injecting noise to the activation function during the training

@ annealing the noise

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

Strategy |: on Feedforward Networks

Flen)
G) O,
B §oeBin(ph
h-t
Figure: *

h' = (b~ & W)
¢(hl_1,§, WE;WE) —rxloh~! + (1- Wl) ® h!
hﬂ — QS(hE_l,E,ﬂJ;WE).

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

/29

Strategy Il: on Linearizing the Network

@ adding noise to the activation function: may suffer from excessive
random exploration when the noise is very large

@ Solution: bounding the element-wise activation function f(-) with its
linear approximation when the variance of the noise is very large, after
centering it at the origin

© f* is bounded and centered at the origin

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks /29

Linearizing the Network

e

Figure: *

Y(xi, & wi) = sgn(u”(a:))min(ju*(z4)], [f*(2:) + sgn(u”(z:))]s:l]) +u(0)

Figure: *

u(x) is the first order Taylor approximation of the original activation
function around zero and u*(x) stands for the centered u(x) which is
obtained by shifting u(x) towards the origin.

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

Algorithm

Algorithm 1 Activation of a unit ¢ at layer .

sz w, hiTl 4 b b an affine transformation of h'~!
T A ut:m) — f(z;) > A, is a measure of a saturation of a unit

o'(a:i) — (s1gmmd(a1A1) —0.5)2 t> std of the injected noise depends on A;
D6~ (, 1) &> sampling the noise from a basic Normal distribution

s 8+ pea(m)|& > Half-Normal noise controlled by o (=;), const. ¢ and prob-ty p'

P (e, &) « sgn(ur(z;))min(u(z;)], [F(z:) + sgn(u®(z:))lsil|) + u(0) > noisy activation
: m! ~ Bernoulli(p') & pt controls the variance of the noise AND the prob of skipping a unit
: B =(z, &) > hl is a noisy activation candidate
s o(hi=L g mhwy) = a4 (L—2l)Rt > make a HARD decision between !~ and h!

R T

Figure: *

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

Annealing schedules for p

a different schedule for each layer of the network, such that the noise in
the lower layers will anneal faster.

© Exponential Decay

kth
pl=1-e tL (1)
@ Square root decay
. t
min(pmin, 1 — N) (2)
epochs
© Linear decay
. t
min(pmin, 1 — N) (3)
epochs

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

Explanation of two strategies: Mollification for Neural

Networks

@ novel method for training neural networks
@ A sequence of optimization problems of increasing complexity, where

the first ones are easy to solve but only the last one corresponds to
the actual problem of interest.

Figure: *

© The training procedure iterates over a sequence of objective functions
starting from the simpler ones i.e. with a smoother loss surface and

moving towards more complex ones until the last,-original, objective
Mollifying Networks /

Caglar Gulcehre Marcin Moczulski Francesco

Mollifiers

© To smooth the loss function £, parametrized by § € R" by convolving
it with another function K(-) with stride 7 € R"

£x0) = [(20 - DK) (4)

—00

@ Many choices for K but must be a mollifier

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

Mollifier

@ A mollifier is an infinitely differentiable function that behaves like an

approximate identity in the group of convolutions of integrable
functions.

@ If K() is an infinitely differentiable function, that converges to the
Dirac delta function when appropriately rescaled and for any
integrable function £, then it is a mollifier

Lk(0) = (£ K)(0) (5)

o0

£i(0) = tim |

e "K(D)L(0 — T)dT (6)

o0

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

Mollifiers: Gradients

@ gradients of the mollified loss:
VoL (0) = Vo(L = K)(0) = L+ V(K)(0) (7)

@ How does this Vo Lk(0) relate to VoL(6)?
© Use weak gradients

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

Weak Gradients

@ For an integrable function £ in space £ € L([a, b]),g € L([a, b]" is an
n-dimensional weak gradient of L if it satisfies:

/ g()K(7)dr = — / L(r)VK(7)dr (8)

where K(7) is an infinitely differentiable function vanishing at infinity,
Celab]"and 7 € R"

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

Mollified Gradients
/ g(F)K(r / L(H)VK(r (9)

VoL (0) = Vo(L + K)(B) = £+ V(K)(6) (10)
VoLi(0) = / £(0 — P)VK(r)dr (1)
VoL (0) = / (0 — 1)K(r)dr (12)

For a differentiable almost everywhere function £, the weak gradient g(0)
is equal to VyL almost everywhere

VoLl () = — / VoL(0 — 1)K(7)dr (13)J

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks /29

weight noise methods: Gaussian Mollifiers

@ Use a gaussian mollifier K(-):
@ infinitely differentiable
@ a sequence of properly rescaled Gaussian distributions converges to the
Dirac delta function
@ vanishes in infinity

VQEK:/\/ /V@E - 7')d (14)
VoLr=n(0) = E[VoL(0 — 7)] (15)

TN(0, 1)
VoLxor(6) = — / VoL(0 — 7)p(r)dr (16)

@ sequence of mollifiers indexed by €
VoLron(0) = — / VoL(® — r)etp(D)dr (17)

TN(0,€21)

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks /29

weight noise methods: Gaussian Mollifiers

VoL xon(6) = / VLo —) p(C)dr (18)

TN(0, €21)

VoLk=ne(0) = E-[VoL(0 — 7)] (19)
TN(0, €21)
This satisfies the property:

lim VoL x=w.(6) = VoL(6) (20)
e—

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

weight noise methods: Gaussian Mollifiers

£xl6) = [(206 - OK©)(ee) (21)
By monte carlo estimate:
1Y ,
%N;L’(@—f) (22)

(23)

oLk(0) _ 1 XNZ Lk (0~ &)
00 N — 00

Therefore introducing additive noise to the input of £(6) is equivalent to
mollification.
Using this mollifier for neural networks

hl — f-(W/hlfl) (24)
W= F(W — ') (25)
N (1, 0%)

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks /29

Generalized Mollifiers

Generalized Mollifier

A generalized mollifier is an operator, where T,(f) defines a mapping
between two functions, such that T, : f — f*:

lim T,f =f (26)
o—0
fO= lim T,f
g—r00
is an identity function (27)
OT,f(x)

exists Vx,o > 0

X

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks /29

Noisy Mollifier

Noisy Mollifier

A stochastic function ¢(x, &,) with input x and noise £ is a noisy mollifier
if its expected value corresponds to the application of a generalized
mollifier T,

(ToF)(x) = E[p(x,)] (28)

© When o = 0 no noise is injected and therefore the original function
will be optimized.

@ If 0 — oo instead, the function will become an identity function

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks /29

Method: Mollify the cost of an NN

@ During training minimize a sequence of increasingly complex noisy
objectives {£1(0,&,,), £L2(0,€5,), - -+, £X(6,&,,)} by annealing the
scale (variance) of the noise o;

@ algorithm satisfies the fundamental properties of the generalized and

noisy mollifiers

Mollifying Networks

Caglar Gulcehre Marcin Moczulski Francesco

Algorithm

@ start by optimizing a convex objective function that is obtained by
configuring all the layers between the input and the last cost layer to
compute an identity function, {by skipping both the affine
transformations and the blocks followed by nonlinearities. }

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

Algorithm

@ start by optimizing a convex objective function that is obtained by
configuring all the layers between the input and the last cost layer to
compute an identity function, {by skipping both the affine
transformations and the blocks followed by nonlinearities. }

@ During training, the magnitude of noise which is proportional to p is
annealed, allowing to gradually evolve from identity transformations
to linear transformations between the layers.

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks /29

Algorithm

@ start by optimizing a convex objective function that is obtained by
configuring all the layers between the input and the last cost layer to
compute an identity function, {by skipping both the affine
transformations and the blocks followed by nonlinearities. }

@ During training, the magnitude of noise which is proportional to p is
annealed, allowing to gradually evolve from identity transformations
to linear transformations between the layers.

© Simultaneously, as we decrease the p, the noisy mollification
procedure allows the element-wise activation functions to gradually
change from linear to be nonlinear

© Thus changing both the shape of the cost and the model architecture

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks /29

Experiments: Deep Parity, CIFAR

Test Accuracy

Stochastic Depth ~ 93.25
Mollified Convnet 92.45
o B ResNet 91.78

K250 updsies

Figure 8: The learning curves of a 6-layers MLP Table 1: CIFAR10 deep convolutional
with sigmoid activation function on 40 bit parity neural network.
task.

Figure: *

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

Different Annealing Schedules

1.0

—— sqrt annealing

—— linear annealing
—— exp decay k=100
exp decay k=50
exp decay k=10

08

06

04

02

00 100 200 300 400 ."'I)O
Figure: *

Caglar Gulcehre Marcin Moczulski Francesco Mollifying Networks

	Introduction
	Motivation
	Previous Studies

	Method
	Proposed Method

