Neural Optimizer Search with Reinforcement Learning

Irwan Bello¹ Barret Zoph¹ Vijay Vasudevan¹ Quoc V. Le¹

¹Google Brain

ICLR, 2017/ Presenter: Anant Kharkar

Irwan Bello, Barret Zoph, Vijay Vasudevan, QNeural Optimizer Search with Reinforcement

Introduction

- Motivation
- Approach

2 Methods

- Domain-Specific Language
- Controller RNN

3 Experiments

- Optimizer Discovery
- Transfer Experiment

Introduction

- Motivation
- Approach

Method

- Domain-Specific Language
- Controller RNN

Experiments

- Optimizer Discovery
- Transfer Experiment

Classical optimizers:

- SGD
- SGD w/Momentum
- Adam
- RMSProp

Combination of stochastic methods and heuristic approximations

Want to automate process of generating update rules Produce equation, not just numerical updates

- Motivation
- Approach

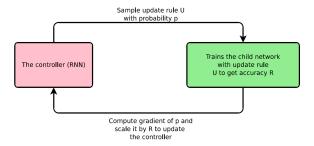
Methods

- Domain-Specific Language
- Controller RNN

Experiments

- Optimizer Discovery
- Transfer Experiment

- RNN controller produces update rule string
- Controller updated based on performance of optimizer
- RL approach to training



• How to generate update rules? First define space of update rules

(日) (同) (三) (三)

- LSTM for numerical updates (Andrychowicz et al., 2016)
 - Equations are more transferrable
- Genetic programming for update equations (Orchard & Wang, 2016)
 - Slow and needs heuristics
- Neural Architecture Search (Zoph & Le, 2017) seen earlier
 - RNN produces network architecture

Introduction

- Motivation
- Approach

2 Methods

Domain-Specific Language

Controller RNN

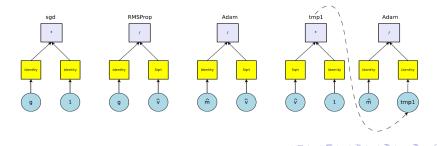
Experiments

- Optimizer Discovery
- Transfer Experiment

Domain-Specific Language

- Each optimizer has computational graph binary expression tree Components:
 - 2 operands
 - Unary function for each operand
 - Binary function to combine

$$\Delta w = \lambda * b(u_1(op_1), u_2(op_2))$$



Introduction

- Motivation
- Approach

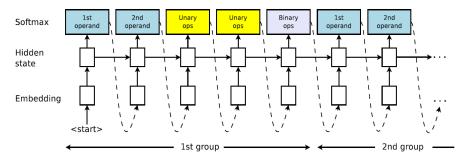
2 Methods

- Domain-Specific Language
- Controller RNN

Experiments

- Optimizer Discovery
- Transfer Experiment

Trained with Adam



Objective function: $J(\theta) = \mathbb{E}_{\Delta \sim p_{\theta}(.)}[R(\Delta)]$ Optimize reward (accuracy of target model)

イロト 不得下 イヨト イヨト

• Operands

- Gradients: $g, g^2, g^3, sign(g)$
- Moving averages: $\hat{m}, \hat{v}, \hat{y}, sign(\hat{m})$
- Weights: $10^{-4}w$, $10^{-3}w$, $10^{-2}w$, $10^{-1}w$
- ADAM, RMSProp, 1, small noise
- Unary Functions
 - $x, -x, e^x, \log |x|, clip, drop, sign$
- Binary Functions

•
$$x + y, x - y, x * y, \frac{x}{y + \varepsilon}$$

- Optimizers tested on 3x3 ConvNet (32 filters) for 5 epochs
- Favors early progress

Introduction

- Motivation
- Approach

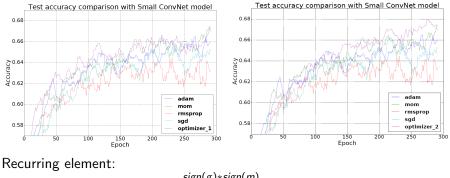
Method

- Domain-Specific Language
- Controller RNN

• Optimizer Discovery

• Transfer Experiment

Optimizer Discovery



 $e^{sign(g) * sign(m)} * g$

• If sign(g) agrees with running average, scale e - g keeps decreasing

• Else scale $\frac{1}{e}$ - gradient direction changed

Introduction

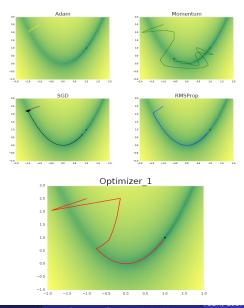
- Motivation
- Approach

Method

- Domain-Specific Language
- Controller RNN

- Optimizer Discovery
- Transfer Experiment

Rosenbrock Function



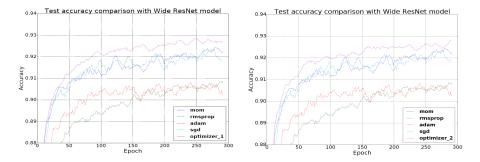
Irwan Bello, Barret Zoph, Vijay Vasudevan, QNeural Optimizer Search with Reinforcement

æ

< 3 >

-

Wide ResNet (Zagoruyko & Komodakis, 2016) - 300 epochs



CIFAR-10

Optimizer	Final Val	Final Test	Best Val	Best Test
SGD	92.0	91.8	92.9	91.9
Momentum	92.7	92.1	93.1	92.3
ADAM	90.4	90.1	91.8	90.7
RMSProp	90.7	90.3	91.4	90.3
$[e^{\text{sign}(g)*\text{sign}(m)} + \text{clip}(g, 10^{-4})] * g$	92.5	92.4	93.8	93.1
$\operatorname{clip}(\hat{m}, 10^{-4}) * e^{\hat{v}}$	93.5	92.5	93.8	92.7
$\hat{m} * e^{\hat{v}}$	93.1	92.4	93.8	92.6
$g * e^{\operatorname{sign}(g) * \operatorname{sign}(m)}$	93.1	92.8	93.8	92.8
$drop(g, 0.3) * e^{sign(g) * sign(m)}$	92.7	92.2	93.6	92.7
$\hat{m} * e^{g^2}$	93.1	92.5	93.6	92.4
$\mathrm{drop}(\hat{m}, 0.1)/(e^{g^2} + \epsilon)$	92.6	92.4	93.5	93.0
$\operatorname{drop}(g, 0.1) * e^{\operatorname{sign}(g) * \operatorname{sign}(m)}$	92.8	92.4	93.5	92.2
$\operatorname{clip}(\operatorname{RMSProp}, 10^{-5}) + \operatorname{drop}(\hat{m}, 0.3)$	90.8	90.8	91.4	90.9
$ADAM * e^{\operatorname{sign}(g) * \operatorname{sign}(m)}$	92.6	92.0	93.4	92.0
$ADAM * e^{\hat{m}}$	92.9	92.8	93.3	92.7
$g + \operatorname{drop}(\hat{m}, 0.3)$	93.4	92.9	93.7	92.9
$g + \operatorname{drop}(\hat{m}, 0.3)$ $\operatorname{drop}(\hat{m}, 0.1) * e^{g^3}$	92.8	92.7	93.7	92.8
$g - clip(g^2, 10^{-4})$	93.4	92.8	93.7	92.8
$e^g - e^{\hat{m}}$	93.2	92.5	93.5	93.1
$drop(\hat{m}, 0.3) * e^{10^{-3}w}$	93.2	93.0	93.5	93.2

Irwan Bello, Barret Zoph, Vijay Vasudevan, QNeural Optimizer Search with Reinforcement

æ

Completely different model & task: WMT 2014 English \rightarrow German task GNMT model - 8 LSTM layers

Optimizer	Train perplexity	Test BLEU	
Adam	1.49	24.5	
$g * e^{\operatorname{sign}(g) * \operatorname{sign}(m)}$	1.39	25.0	

イロン イ理と イヨン ト

- RNN generates optimizer equations
- Train RNN via RL setup
- Optimizers tested on small ConvNet
- New optimizers on par with state of the art

- ₹ € ►