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Motivation

Theoretical analysis of perturbed gradient descent algorithm (show it
is almost “dimension free”)

Perturbed gradient descent can escape saddle points for free

Novel characterization of geometry around saddle points
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Gradient Descent: Convex Problem

Gradient Descent:
xt+1 = xt − η∇f (xt) (1)

Definition

A differentiable function f(.) is l-smooth (or l-gradient Lipschitz):

∀x1, x2, ||∇f (x1)−∇f (x2)|| ≤ l ||x1 − x2|| (2)

Definition

A twice-differentiable function f(.) is α-convex if ∀x , λmin(∇2(f (x)) > α
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Gradient Descent: Convex Problem

Theorem

Assume above holds for f . For any ε > 0, if we run a gradient descent
with step η = 1

l , iterate xt will be ε-close to x∗ in iterations:

2l

α
log
||x0 − x ∗ ||

ε
(3)
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Gradient Descent: Non-Convex Problem

Permutation Symmetry
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Gradient Descent: Non-Convex Problem

Definition

For a differentiable function f(.), we say that x is a first order stationary
point if ||∇f (x)|| = 0; also it is ε-first order stationary point if
||∇f (x)|| ≤ ε.
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Gradient Descent: Non-Convex Problem

Theorem

Assume f(.) is l-smooth. Then, for any ε 0, if we run gradient descent with
step size η = 1

l and termination condition ||∇f (x)|| ≤ ε, the output will
be a ε-first order stationary point, and the algorithm will terminate
within following number of iterations

l(f (x0)− f ∗)
ε2

(4)
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Types of Critical Points
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Second Order Properties

Definition

A twice-differentiable function f(.) is ρ-Hessian Lipshitz if:

∀x1, x2, ||∇2f (x1)−∇2f (x2)|| ≤ ρ||x1 − x2|| (5)

Definition

For a ρ–Hessian Lipshitz function f(.), we say that x is a second order
stationary point if ||∇f (x)|| = 0 and λmin(∇2f (x)) ≥ 0; also it is
ε-second order stationary point if

||∇f (x)|| ≤ ε;λmin(∇2f (x)) ≥ −√ρε (6)
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Escaping Saddle Points

Second order Taylor Expansion:
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Strict Saddle Points
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State-of-the-art

First Order Methods

Second Order Methods

Compromise between the two
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Perturbed Gradient Descent

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, Michael I. JordonHow to Escape Saddle Points Efficiently
ICML, 2017 Presenter: Ritambhara Singh 18

/ 24



Perturbed Gradient Descent

Assumption A1. Function f(.) is both l-smooth and ρ-Hessian Lipschitz.
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Exploiting Large Gradient or Negative Curvature

Second order stationary point has small gradient and here Hessian does
not have a significant negative eigenvalue.
If it does not have these properties then:

Gradient is large: ||∇f (xt)|| ≥ gthresh

Around saddle point: ||∇f (xt)|| ≤ gthresh|| and
λmin(∇2f (xt)) ≤ −√ρε
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Escaping saddle points quickly

The perturbation ball can be divided into two regions:

Escaping Region (Xescape) : Significant decrease in function value

Stuck Region (Xstuck = Bx̂(r)− Xescape) : Little decrease
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Summary

Theoretical analysis of perturbed gradient descent algorithm (showed
it is almost “dimension free”)

Showed that perturbed gradient descent can escape saddle points for
free

Novel characterization of geometry around saddle points

Future Direction

Can similar techniques be applied to accelerated gradient descent
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