How to Escape Saddle Points Efficiently

Chi Jin Rong Ge Praneeth Netrapalli Sham M. Kakade Michael I. Jordon

University of California Berkeley

Duke University

Microsoft Research India

University of Washington

ICML, 2017 Presenter: Ritambhara Singh

・ 同 ト ・ ヨ ト ・ ヨ ト

- Motivation
- Background
- State-of-the-art

2 Proposed Approach

- Perturbed Gradient Descent
- Proof Sketch

A B F A B F

Motivation

- Background
- State-of-the-art

Proposed Approach

- Perturbed Gradient Descent
- Proof Sketch

3

・ 何 ト ・ ヨ ト ・ ヨ ト

- Theoretical analysis of perturbed gradient descent algorithm (show it is almost "dimension free")
- Perturbed gradient descent can escape saddle points for free
- Novel characterization of geometry around saddle points

くほと くほと くほと

- Theoretical analysis of perturbed gradient descent algorithm (show it is almost "dimension free")
- Perturbed gradient descent can escape saddle points for free
- Novel characterization of geometry around saddle points

Algorithm 1 Perturbed Gradient Descent (Meta-algorithm)	
for $t = 0, 1,$ do	
if perturbation condition holds then	
$\mathbf{x}_t \leftarrow \mathbf{x}_t + \xi_t$, ξ_t uniformly $\sim \mathbb{B}_0(r)$	
$\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t - \eta abla f(\mathbf{x}_t)$	

- 4 同 6 4 日 6 4 日 6

- Motivation
- Background
- State-of-the-art

Proposed Approach

- Perturbed Gradient Descent
- Proof Sketch

< 🗗 🕨

< 3 > < 3 >

Gradient Descent: Convex Problem

Gradient Descent:

$$x_{t+1} = x_t - \eta \nabla f(x_t) \tag{1}$$

Gradient Descent: Convex Problem

Gradient Descent:

$$x_{t+1} = x_t - \eta \nabla f(x_t) \tag{1}$$

イロト イポト イヨト イヨト

Definition

A differentiable function f(.) is *I*-smooth (or *I*-gradient Lipschitz):

$$\forall x_1, x_2, ||\nabla f(x_1) - \nabla f(x_2)|| \le I ||x_1 - x_2||$$
(2)

Gradient Descent: Convex Problem

Gradient Descent:

$$x_{t+1} = x_t - \eta \nabla f(x_t) \tag{1}$$

Definition

A differentiable function f(.) is *I*-smooth (or *I*-gradient Lipschitz):

$$\forall x_1, x_2, ||\nabla f(x_1) - \nabla f(x_2)|| \le I||x_1 - x_2||$$
(2)

Definition

A twice-differentiable function f(.) is α -convex if $\forall x, \lambda_{min}(\nabla^2(f(x)) > \alpha)$

・聞き ・ ほき・ ・ ほき

Theorem

Assume above holds for f. For any $\epsilon > 0$, if we run a gradient descent with step $\eta = \frac{1}{l}$, iterate x_t will be ϵ -close to x_* in iterations:

$$\frac{2I}{\alpha}\log\frac{||x_0-x*||}{\epsilon}$$

(3)

Gradient Descent: Non-Convex Problem

Permutation Symmetry

æ

(日) (周) (三) (三)

Gradient Descent: Non-Convex Problem

Permutation Symmetry

Optimal Solution

Equivalent Solution

.∃ >

Definition

For a differentiable function f(.), we say that x is a **first order stationary point** if $||\nabla f(x)|| = 0$; also it is ϵ -**first order stationary point** if $||\nabla f(x)|| \le \epsilon$.

伺下 イヨト イヨト

Theorem

Assume f(.) is *I*-smooth. Then, for any $\epsilon 0$, if we run gradient descent with step size $\eta = \frac{1}{l}$ and termination condition $||\nabla f(x)|| \le \epsilon$, the output will be a ϵ -first order stationary point, and the algorithm will terminate within following number of iterations

$$\frac{l(f(x_0) - f^*)}{\epsilon^2} \tag{4}$$

æ

(日) (周) (三) (三)

Definition

A twice-differentiable function f(.) is ρ -Hessian Lipshitz if:

$$\forall x_1, x_2, ||\nabla^2 f(x_1) - \nabla^2 f(x_2)|| \le \rho ||x_1 - x_2||$$
 (5)

イロト イヨト イヨト イヨト

Definition

A twice-differentiable function f(.) is ρ -Hessian Lipshitz if:

$$\forall x_1, x_2, ||\nabla^2 f(x_1) - \nabla^2 f(x_2)|| \le \rho ||x_1 - x_2||$$
 (5)

Definition

For a ρ -Hessian Lipshitz function f(.), we say that x is a **second order** stationary point if $||\nabla f(x)|| = 0$ and $\lambda_{min}(\nabla^2 f(x)) \ge 0$; also it is ϵ -second order stationary point if

$$|\nabla f(x)|| \le \epsilon; \lambda_{\min}(\nabla^2 f(x)) \ge -\sqrt{\rho\epsilon}$$
(6)

・ 何 ト ・ ヨ ト ・ ヨ ト

Second order Taylor Expansion:

$$f(y)pprox f(x)+\langle
abla f(x),y-x
angle+rac{1}{2}(y-x)^{ op}
abla^2f(x)(y-x).$$

-2

・ロト ・聞ト ・ヨト ・ヨト

```
A function f(x) is strict saddle if all points x satisfy at least one of the following

1. Gradient \nabla f(x) is large.

2. Hessian \nabla^2 f(x) has a negative eigenvalue that is bounded away from 0.

3. Point x is near a local minimum.
```


.

- Motivation
- Background
- State-of-the-art

Proposed Approach

- Perturbed Gradient Descent
- Proof Sketch

3

★撮♪ ★注♪ ★注♪

State-of-the-art

- First Order Methods
- Second Order Methods
- Compromise between the two

Algorithm	Iterations	Oracle
Ge et al. [2015]	$O(\text{poly}(d/\epsilon))$	Gradient
Levy [2016]	$O(d^3 \cdot \operatorname{poly}(1/\epsilon))$	Gradient
This Work	$O(\log^4(d)/\epsilon^2)$	Gradient
Agarwal et al. [2016]	$O(\log(d)/\epsilon^{7/4})$	Hessian-vector product
Carmon et al. [2016]	$O(\log(d)/\epsilon^{7/4})$	Hessian-vector product
Carmon and Duchi [2016]	$O(\log(d)/\epsilon^2)$	Hessian-vector product
Nesterov and Polyak [2006]	$O(1/\epsilon^{1.5})$	Hessian
Curtis et al. [2014]	$O(1/\epsilon^{1.5})$	Hessian

イロト イポト イヨト イヨト

- Motivation
- Background
- State-of-the-art

2 Proposed Approach

- Perturbed Gradient Descent
- Proof Sketch

< 🗗 🕨

- 4 3 6 4 3 6

Algorithm 2 Perturbed Gradient Descent: $PGD(\mathbf{x}_0, \ell, \rho, \epsilon, c, \delta, \Delta_f)$ $\chi \leftarrow 3 \max\{\log(\frac{d(\Delta)}{ct^4}), 4\}, \eta \leftarrow \frac{c}{\ell}, r \leftarrow \frac{\sqrt{c}}{\chi^2}, \frac{c}{\ell}, g_{\text{thres}} \leftarrow \frac{\sqrt{c}}{\chi^2}, \sqrt{\frac{c^3}{\rho}}, t_{\text{thres}} \leftarrow \frac{\chi}{c'}, \frac{\ell}{\sqrt{\rho}t}$ $t_{\text{noise}} \leftarrow -t_{\text{thres}} - 1$ for $t = 0, 1, \dots$ do if $\|\nabla f(\mathbf{x}_t)\| \le g_{\text{thres}}$ and $t - t_{\text{noise}} > t_{\text{thres}}$ then $\tilde{\mathbf{x}}_t \leftarrow \tilde{\mathbf{x}}_t, t_{\text{noise}} \leftarrow t$ $\mathbf{x}_t \leftarrow \tilde{\mathbf{x}}_t + \xi, \quad \xi_t \text{ uniformly } \sim \mathbb{B}_0(r)$ if $t - t_{\text{noise}} = t_{\text{thres}}$ and $f(\mathbf{x}_t) - f(\tilde{\mathbf{x}}_{\text{tnoise}}) > -f_{\text{thres}}$ then return $\tilde{\mathbf{x}}_{\text{tnoise}}$ $\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t - \eta \nabla f(\mathbf{x}_t)$

イロト イ理ト イヨト イヨト 三日

Assumption A1. Function f(.) is both *I*-smooth and ρ -Hessian Lipschitz.

Theorem 3. Assume that $f(\cdot)$ satisfies A1. Then there exists an absolute constant c_{\max} such that, for any $\delta > 0, \epsilon \leq \frac{\ell^2}{\rho}, \Delta_f \geq f(\mathbf{x}_0) - f^*$, and constant $c \leq c_{\max}$, $PGD(\mathbf{x}_0, \ell, \rho, \epsilon, c, \delta, \Delta_f)$ will output an ϵ -second-order stationary point, with probability $1 - \delta$, and terminate in the following number of iterations:

$$O\left(\frac{\ell(f(\mathbf{x}_0) - f^{\star})}{\epsilon^2}\log^4\left(\frac{d\ell\Delta_f}{\epsilon^2\delta}\right)\right).$$

<ロ> (四) (四) (三) (三) (三) (三)

- Motivation
- Background
- State-of-the-art

2 Proposed Approach

- Perturbed Gradient Descent
- Proof Sketch

< 3 > < 3 >

Second order stationary point has small gradient and here Hessian does not have a significant negative eigenvalue. If it does not have these properties then:

- Gradient is large: $||\nabla f(x_t)|| \ge g_{thresh}$
- Around saddle point: $||\nabla f(x_t)|| \le g_{thresh}||$ and $\lambda_{min}(\nabla^2 f(x_t)) \le -\sqrt{\rho\epsilon}$

Lemma 9 (Gradient). Assume that $f(\cdot)$ satisfies A1. Then for gradient descent with stepsize $\eta < \frac{1}{\ell}$, we have $f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) - \frac{\eta}{2} ||\nabla f(\mathbf{x}_t)||^2$.

Lemma 10 (Saddle). (informal) Assume that $f(\cdot)$ satisfies A1, If \mathbf{x}_t satisfies $\|\nabla f(\mathbf{x}_t)\| \leq g_{thres}$ and $\lambda_{\min}(\nabla^2 f(\mathbf{x}_t)) \leq -\sqrt{\rho\epsilon}$, then adding one perturbation step followed by t_{thres} steps of gradient descent, we have $f(\mathbf{x}_{t+t_{thres}}) - f(\mathbf{x}_t) \leq -f_{thres}$ with high probability.

・ロン ・聞と ・ヨン ・ヨン … ヨ

The perturbation ball can be divided into two regions:

- Escaping Region (X_{escape}) : Significant decrease in function value
- Stuck Region $(X_{stuck} = B_{\hat{\chi}}(r) X_{escape})$: Little decrease

The perturbation ball can be divided into two regions:

- Escaping Region (X_{escape}) : Significant decrease in function value
- Stuck Region $(X_{stuck} = B_{\hat{\chi}}(r) X_{escape})$: Little decrease

★聞▶ ★ 国▶ ★ 国▶

Lemma 11. (informal) Suppose $\tilde{\mathbf{x}}$ satisfies the precondition of Lemma 10, and let \mathbf{e}_1 be the smallest eigendirection of $\nabla^2 f(\tilde{\mathbf{x}})$. For any $\delta \in (0, 1/3]$ and any two points $\mathbf{w}, \mathbf{u} \in \mathbb{B}_{\tilde{\mathbf{x}}}(r)$, if $\mathbf{w} - \mathbf{u} = \mu r \mathbf{e}_1$ and $\mu \geq \delta/(2\sqrt{d})$, then at least one of \mathbf{w}, \mathbf{u} is not in the stuck region \mathcal{X}_{stuck} .

< ∃ > <

- Theoretical analysis of perturbed gradient descent algorithm (showed it is almost "dimension free")
- Showed that perturbed gradient descent can escape saddle points for free
- Novel characterization of geometry around saddle points
- Future Direction
 - Can similar techniques be applied to accelerated gradient descent

・ 回 ト ・ ヨ ト ・ ヨ ト …