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@ Theoretical analysis of perturbed gradient descent algorithm (show it
is almost “dimension free")

@ Perturbed gradient descent can escape saddle points for free

@ Novel characterization of geometry around saddle points
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Motivation

@ Theoretical analysis of perturbed gradient descent algorithm (show it
is almost “dimension free")

@ Perturbed gradient descent can escape saddle points for free

@ Novel characterization of geometry around saddle points

Algorithm 1 Perturbed Gradient Descent (Meta-glgorithm)
fort=01,...do
if perturbation condition holds then
xex+f,  funiformly ~Bylr)
L ]
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Gradient Descent: Convex Problem

Gradient Descent:
Xer1 = Xt — NV F(xt) (1)
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Gradient Descent: Convex Problem

Gradient Descent:
Xer1 = Xt — NV F(xt) (1)

Definition

A differentiable function f(.) is /-smooth (or /-gradient Lipschitz):

Vx1, X2, [|[VF(x1) — VF(x2)[| < /]|x1 — x| (2)
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Gradient Descent: Convex Problem

Gradient Descent:
Xer1 = Xt — NV F(xt) (1)

Definition

A differentiable function f(.) is /-smooth (or /-gradient Lipschitz):

Vx1, X2, [|[VF(x1) — VF(x2)[| < /]|x1 — x| (2)

Definition

A twice-differentiable function f(.) is a-convex if ¥x, Amin(V2(f(x)) > «
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Gradient Descent: Convex Problem

Assume above holds for f. For any e > 0, if we run a gradient descent

with step n = % iterate x; will be e-close to xx in iterations:

21, ||lxo —x x|
ZloghP =1
a

€
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Gradient Descent: Non-Convex Problem

Permutation Symmetry

Optimal Solution Equivalent Solution Not optimal
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Gradient Descent: Non-Convex Problem

Definition

For a differentiable function f(.), we say that x is a first order stationary
point if ||[Vf(x)|| = 0; also it is e-first order stationary point if
IVF(X)] <
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Gradient Descent: Non-Convex Problem

Theorem

Assume f(.) is |-smooth. Then, for any €0, if we run gradient descent with
step size ) = } and termination condition ||V f(x)|| < e, the output will

be a e-first order stationary point, and the algorithm will terminate
within following number of iterations

I(f(xp) — fx
((06)2 ) (4)
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Types of Critical Points

local min local max saddle point
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Second Order Properties

Definition

A twice-differentiable function f(.) is p-Hessian Lipshitz if:

V1, xo, [|V2F(x1) = V2 ()| < pllx1 — x| (5)
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Second Order Properties

Definition
A twice-differentiable function f(.) is p-Hessian Lipshitz if:

V1, x2, [|V2F(xa) = VAF ()| < pllxa — x| (5)

Definition

For a p—Hessian Lipshitz function f(.), we say that x is a second order
stationary point if ||V (x)|| = 0 and \,in(V?f(x)) > 0; also it is
e-second order stationary point if

V()| < & Amin(V2F(x)) > —/pe (6)
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Escaping Saddle Points

Second order Taylor Expansion:

Fy) = f(@) + (Vf(z),y — ) + %(’y ~2) V2 f(e)(y ).
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Strict Saddle Points

A function f{(z) i strictsaddle if all points 2 satify at least one of the
following

wGradient V f{z) i large.

2 Hessian sz{m) has anegative eigenvalue that is bounded away from o.

3, Point 2 is near alocal minimum,

large gradient saddle point local min
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State-of-the-art

o First Order Methods
@ Second Order Methods

@ Compromise between the two

Algorithm Iterations Oracle
Ge et al. [2015] O(poly(d/e)) Gradient
Levy [2016] 0O(d* - poly(1/€)) Gradient
This Work Ollog'(d)/e?) Gradient
Agarwal et al. [2016] O(log(d)/e"/*) Hessian-vector product
Carmon et al. [2016] O(log(d)/e"Y) Hessian-vector product
Carmon and Duchi [2016] O(log(d)/€?) Hessian-vector product
Nesterov and Polyak [2006] O(1/€15) Hessian
Curtis et al. [2014] 0(1/e4%) Hessian
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e Proposed Approach
@ Perturbed Gradient Descent
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Perturbed Gradient Descent

Algorithm 2 Perturbed Gradient Descent: PGD(x), £, p, ¢, ¢, 6,Af)

didy f 1
Xe Smﬂ[bg(?lﬂ)d}‘ N %| re ﬁ% Jthres & {;'ﬂ fones & f'r\/% bibres :}" ;‘p-!
tosise = ~Hthres = 1
fort=0,1,... do
it ”vf(x!)" < ehres AN T = bygieo > Lihres then
XXy, s 8
Xt %+g, G uifomly ~Byfr)
ift = togise = tahm and f[xi) - f(i(tmm] > _flhm then
retumn &,
X % -V f(x)
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Perturbed Gradient Descent

Assumption Al. Function f(.) is both /-smooth and p-Hessian Lipschitz.

Theorem 3. Assume that () satisfies A1, Then there exists an absolute constant c,,,, such that,
fomnyd>0€< JAp 2 flxg) = f*, and constont ¢ < ey, PGO(R, . pre,,6,4) will output
an e-second-onder siatwmry point, with probability 18, and terminate in the following number of

teations ) (M o (@L)) ‘

I3 €f
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Exploiting Large Gradient or Negative Curvature

Second order stationary point has small gradient and here Hessian does
not have a significant negative eigenvalue.
If it does not have these properties then:

o Gradient is large: ||V (xt)|| > &thresh

@ Around saddle point: ||Vf(x¢)|| < gthresn|| and
Amin(v2f(xt)) S _\//76

Lemma 9 (Gradient), Assume that f(-) satisfies AL Then for gradient descent with stepsize
1< 3, we have flxe1) < fxg) = H|VS ()"

Lemma 10 (Saddle). (informal) Assume that () satisfies A1, If x; satisfies V(%) < Gores
and Min (V2 (1)) < = /D€, then adding one perturbation step followed by iy steps of gradient
descent, we have f(Xese,, ) = f(%i) € = fires with high probability.
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Escaping saddle points quickly

The perturbation ball can be divided into two regions:
o Escaping Region (Xescape) : Significant decrease in function value
o Stuck Region (Xstuck = Bz(r) — Xescape) : Little decrease
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Escaping saddle points quickly

Lemma 11. (informal} Suppose X satisfics the precondition of Lemma 10, and let e, be the smallest
eigendirection of Vf(x). For any & € (0,1/3] and any two points w,u € By(r), if w —u= pre;
and > 6/[2*/&), then ot least one of w,u is not in the stuck region Xk
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@ Theoretical analysis of perturbed gradient descent algorithm (showed
it is almost “dimension free”)

@ Showed that perturbed gradient descent can escape saddle points for
free

@ Novel characterization of geometry around saddle points

@ Future Direction

o Can similar techniques be applied to accelerated gradient descent
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