Forward and Reverse Gradient-Based Hyperparameter Optimization

Luca Franceschi ^{1,2}, Michele Donini ¹, Paolo Frasconi ³, Massimiliano Pontil ^{1,2}

 1 lstituto Italiano di Tecnologia, Genoa, Italy 2 Dept of Computer Science, University College London, UK 3 Dept of Information Engineering, Universit degli Studi di Firenze, Italy

ICML 2017/ Presenter: Ji Gao

Outline

- Motivation
- 2 Method
 - Overview
 - Optimization
- Complexity analysis
- Experiment

Motivation

- Choose hyperparameters in optimization are hard
- Could we automatically select hyperparameters?
- Hyperparameter optimization: Construct a response function of the hyperparameters and explore the hyperparameter space to seek an optimum

Related Work

- Grid search: List parameters on a grid and train all of them.
 Problem: Impractical when number of hyperparameters is large. Even outperform by random search.
- Bayesian optimization: Treat the global process as a random function and place a prior over it. After that, construct an acquisition function (referred to as infill sampling criteria) that determines the next query point.
- Gradient-based methods: Use the gradient method to optimize hyperparameters.

Hyperparameters

s: state in \mathbb{R}^d , including weights (object) and hyperparameters λ .

$$s_t = \Phi_t(s_{t-1}, \lambda)$$

An example in such definition:

Gradient Descent with Momentum

w: weights. J: objective function. λ : hyperparameters $s_t = (v_t, w_t)$:

$$v_t = \mu v_{t-1} + \nabla J_t(w_{t-1})$$

$$w_t = w_{t-1} - \eta(\mu v_{t-1} - \nabla J_t(w_{t-1}))$$

In this case: $\lambda = (\mu, \eta)$

Problem formulation

Goal of hyperparameter optimization

Solve:

$$\min_{\lambda} f(\lambda)$$

Where a response function $f: R^m \to R$ is defined at $\lambda \in R^m$ as

$$f(\lambda) = E(s_T(\lambda))$$

E: Validation error

Problem formulation - Optimization

Goal of hyperparameter optimization

Solve:

$$\min_{\lambda, s_1, \dots s_t} E(s_T)$$

Subject to: $s_t = \Phi_t(s_{t-1}, \lambda)$

• Lagrangian:

$$L(s,\lambda,\alpha) = E(s_T) + \sum_{t=1}^{T} \alpha_t(\Phi_t(s_{t-1},\lambda) - s_t)$$

Problem formulation - Optimization

Lagrangian:

$$L(s,\lambda,\alpha) = E(s_T) + \sum_{t=1}^{T} \alpha_t(\Phi_t(s_{t-1},\lambda) - s_t)$$

Derivatives of Lagrangian:

$$\begin{split} \frac{\partial L}{\partial a_t} &= \Phi_t(s_{t-1}, \lambda) - s_t, t = 1..T \\ \frac{\partial L}{\partial s_t} &= a_{t+1} \frac{\partial \Phi_t(s_t, \lambda)}{\partial s_t} - a_t, t = 1..T \\ \frac{\partial L}{\partial s_T} &= \nabla E(s_T) - a_T \\ \frac{\partial L}{\partial \lambda} &= \sum_{t=1}^T \alpha_t \frac{\partial \Phi_t(s_{t-1}, \lambda)}{\partial \lambda} \end{split}$$

Problem formulation - Optimization

Solution can be achieved by setting each derivatives to 0.

Solution:

Let
$$A_t = \frac{\partial \Phi_t(s_{t-1}, \lambda)}{\partial s_{t-1}}$$
, $B_t = \frac{\partial \Phi_t(s_{t-1}, \lambda)}{\partial \lambda}$
The the solution is:

$$a_t = \nabla E(s_T) A_{t+1} ... A_T$$

And we have:

$$\frac{\partial L}{\partial \lambda} = \nabla E(s_T) \sum_{t=1}^{T} (A_{t+1}..A_T) B_t \tag{1}$$

Algorithm

return g

Algorithm 1 HO-REVERSE

```
Input: \lambda current values of the hyperparameters, s_0 initial optimization state Output: Gradient of validation error w.r.t. \lambda for t=1 to T do s_t = \Phi_t(s_{t-1},\lambda) end for \alpha_T = \nabla E(s_T) g=0 for t=T-1 downto 1 do \alpha_t = \alpha_{t+1}A_{t+1} g=g+\alpha_t B_t end for
```

Another way to Calculate

• We have:

$$\nabla f(\lambda) = \nabla E(S_T) \frac{ds_T}{d\lambda}$$

• Let $Z_t = \frac{ds_T}{d\lambda}$,

$$Z_t = A_t Z_{t-1} + B_t$$

• Lead to a recursive solution

Algorithm2

Algorithm 2 HO-FORWARD

Input: λ current values of the hyperparameters, s_0 initial optimization state Output: Gradient of validation error w.r.t. λ $Z_0=0$ for t=1 to T do $s_t=\Phi_t(s_{t-1},\lambda)$ $Z_t=A_tZ_{t-1}+B_t$ end for return $\nabla E(s)Z_T$

Can be real-time updated.

Background: Algorithmic (Automatic) Differentiation

- Algorithmic Differentiation: Techniques to numerically evaluate the derivative of a function.
- Two modes of AD: Forward mode and Reverse mode.

 $\begin{array}{c} f(x_1,x_2) \\ \hline \\ \dot{w}_5 = \dot{w}_3 + \dot{w}_4 \\ \hline \\ \dot{w}_4 = \cos(w_1)\dot{w}_1 \\ \hline \\ \dot{w}_4 = \sin(w_1)\dot{w}_1 \\ \hline \\ \dot{w}_4 = \sin(w_1)\dot{w}_2 \\ \hline \\ \dot{w}_4 = \cos(w_1)\dot{w}_1 \\ \hline \\ \dot{w}_5 = \dot{w}_3 + \dot{w}_4 \\ \hline \\ \dot{w}_6 = \dot{w}_3 + \dot{w}_4 \\ \hline \\ \dot{w}_8 = \dot{w}_1 \dot{w}_2 + \dot{w}_1 \dot{w}_2 \\ \hline \\ \dot{w}_9 = \dot{w}_1 \dot{w}_2 + \dot{w}_1 \dot{w}_2 \\ \hline \\ \dot{w}_1 = \dot{w}_1 \dot{w}_2 + \dot{w}_1 \dot{w}_2 \\ \hline \\ \dot{w}_2 = \dot{w}_1 \dot{w}_2 + \dot{w}_1 \dot{w}_2 \\ \hline \\ \dot{w}_3 = \dot{w}_1 \dot{w}_2 + \dot{w}_1 \dot{w}_2 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_2 + \dot{w}_1 \dot{w}_2 \\ \hline \\ \dot{w}_1 = \dot{w}_1 \dot{w}_2 + \dot{w}_1 \dot{w}_2 \\ \hline \\ \dot{w}_2 = \dot{w}_1 \dot{w}_2 + \dot{w}_1 \dot{w}_2 \\ \hline \\ \dot{w}_3 = \dot{w}_1 \dot{w}_2 + \dot{w}_1 \dot{w}_2 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_2 + \dot{w}_1 \dot{w}_2 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_2 + \dot{w}_1 \dot{w}_2 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_2 + \dot{w}_1 \dot{w}_2 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_2 + \dot{w}_1 \dot{w}_2 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_2 + \dot{w}_1 \dot{w}_2 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_2 + \dot{w}_2 \dot{w}_3 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_2 + \dot{w}_1 \dot{w}_2 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_2 + \dot{w}_2 \dot{w}_3 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_3 + \dot{w}_2 \dot{w}_3 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_2 + \dot{w}_2 \dot{w}_3 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_3 + \dot{w}_2 \dot{w}_3 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_3 + \dot{w}_2 \dot{w}_3 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_3 + \dot{w}_2 \dot{w}_3 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_3 + \dot{w}_2 \dot{w}_3 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_3 + \dot{w}_2 \dot{w}_3 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_3 + \dot{w}_2 \dot{w}_3 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_3 + \dot{w}_2 \dot{w}_3 + \dot{w}_3 \dot{w}_3 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_2 + \dot{w}_2 \dot{w}_3 + \dot{w}_3 \dot{w}_3 \\ \hline \\ \dot{w}_4 = \dot{w}_1 \dot{w}_3 + \dot{w}_2 \dot{w}_3 + \dot{w}_3 \dot{w}_3 \\ \hline \\ \dot{w}_4 + \dot{w}_4 \dot{w}_3 + \dot{w}_4 \dot{w}_3 + \dot{w}_4 \dot{w}_3 + \dot{w}_4 \dot{w}_3 \\ \hline \\ \dot{w}_4 + \dot{w}_4 \dot{w}_3 + \dot{w}_4 \dot{w}_4 \dot{w}_3 + \dot{w}_4 \dot{w}_4 \\ \hline \\ \dot{w}_4 + \dot{w}_4 \dot{w}_5 + \dot{w}_4 \dot{w}_5 + \dot{w}_4 \dot{w}_5 + \dot{w}_4 \dot{w}_5 + \dot{w}_5 \dot{w}_5 + \dot{w$

Forward propagation

Complexity of Algorithmic Differentiation

- Complexity of calculating the Jacobian matrix (the matrix of all first-order partial derivatives):
 - Suppose $f: \mathbb{R}^n \to \mathbb{R}^p$ can be evaluated in time c(n,p) and space s(n,p). We have:
 - For any vector $r \in \mathbb{R}^n$, product of r and Jacobian matrix $J_F r$ can be evaluated in time O(c(n,p)) and space O(s(n,p)) using forward mode AD.
 - For any vector $q \in R^p$, product of q and Jacobian matrix $q^T J_F$ can be evaluated in time O(c(n, p)) and space O(s(n, p)) using reverse mode AD.
 - Jacobian can be calculated in time O(nc(n, p)) using forward mode, and O(pc(n, p)) using reverse mode.

Complexity

Suppose $s_t = \Phi_t(s_t - 1, \lambda)$ can updated in time g(d, m) and space h(d, m).

For Algorithm 1:

Each step of $a_{t+1}A_{t+1}$ and a_tB_t cost O(g(d,m)) time. So it's totally O(Tg(d,m)) time. For space, we need to store all s_t , which requires O(Th(d,m)) space.

Complexity - Algorithm 2

For Algorithm 2:

```
Algorithm 2 HO-FORWARD

Input: \lambda current values of the hyperparameters, s_0 initial optimization state

Output: Gradient of validation error w.r.t. \lambda
Z_0 = 0

for t = 1 to T do

s_t = \Phi_t(s_{t-1}, \lambda)
Z_t = A_t Z_{t-1} + B_t
end for

return \nabla E(s) Z_T
```

Each step of $A_t Z_{t+1}$ require m Jacobian vector multiplication, so the cost is O(mg(d,m)) time. So it's totally O(Tmg(d,m)) time. For space, we only need to store the current s_t , which requires O(h(d,m)) space.

Experiment 1 - Data Hyper-cleaning

- Task: Have a large dataset with corrupted labels. Can only afford to clean a subset. Train a model.
- Method: Weighting every training sample a hyperparameter in [0,1]. Train with a weighted loss on the cleaned validation set.
- Train a plain softmax regression model with weight W and bias b
- Optimization problem:

$$\min_{\lambda} E_{\mathsf{val}}(W_T, b_T)$$
Subject to: $\lambda \in [0, 1]^{N_{tr}}, ||\lambda||_1 \leq R$

• Experiment design: 5000 examples from MNIST dataset as the training data, corrupt 2500 of them. Have 5000 more as validation data, and 10000 as test set.

Experiment 1 result

Table 1: Test accuracies for the baseline, the oracle, and using data hyper-cleaning with four different values of R. The reported F_1 measure is the performance of the hyper-cleaner in correctly identifying the corrupted training examples.

	Accuracy %	F_1
Oracle	90.46	1.0000
Baseline	87.74	-
DH-1000	90.07	0.9137
DH-1500	90.06	0.9244
DH-2000	90.00	0.9211
DH-2500	90.09	0.9217

Oracle: Train with 2500 correct samples together with validation set.

Baseline: Train with corrupted data and validation set.

DH-R: Optimize and find a cleaned subset D_c with a different R value, and finally train with D_c and the validation set.

Experiment 1 result

Figure 2: Right vertical axis: accuracies of DH-1000 on validation and test sets. Left vertical axis: number of discarded examples among noisy (True Positive, TP) and clean (False Positive, FP) ones.

It can successfully discard corrupted samples.

Experiment 2 - Multiple task learning

- Task: Find simultaneously the model of several different related tasks.
 For example, few shot learning.
- Experiment design: Try both CIFAR-10 and CIFAR-100.
 50 samples on CIFAR-10, 300 samples on CIFAR-100 as training set.
 Same size of validation set, and all rest for testing. Use pretrained Inception-V3 model to fetch the feature.
- Use a regularizer from [Evgeniou et al., 2005] $\Omega_{A,\rho}(W) = \sum_{j,k=1}^K A_{j,k} ||w_j w_k||_2^2 + \rho \sum_{k=1}^K ||w_k||^2$
- Training error $E_{tr}(W) = \sum_{i} I(Wx_i + b, y_i) + \Omega_{A,\rho}(W)$
- Optimization problem:

$$\min_{\lambda} E_{\mathsf{val}}(W_T, b_T)$$
Subject to: $\rho \geq 0, A \geq 0$

Experiment 2 result

 $\begin{tabular}{ll} \textbf{Table 2:} Test accuracy \pm standard deviation on CIFAR-10 and CIFAR-100 for single task learning (STL), naive MTL (NMTL) and our approach without (HMTL) and with (HMTL-S) the L1-norm constraint on matrix A. \\ \end{tabular}$

	CIFAR-10	CIFAR-100
STL	67.47±2.78	18.99±1.12
NMTL	69.41 ± 1.90	19.19 ± 0.75
HMTL	$70.85{\pm}1.87$	21.15 ± 0.36
HMTL-S	71.62 ± 1.34	22.09 ± 0.29

HMTL-S algorithm find the following relationship graph:

Figure 3: Relationship graph of CIFAR-10 classes. Edges represent interaction strength between classes.

Experiment 3 - Phone classification

- Task: Phone state classification over 183 classes.
- Experiment design: Data: TIMIT phonetic recognition dataset.
 Model: A previous multi task learning framework [Badino,2016].
- Hyperparameters: learning rate η , momentum μ and ρ , a hyperparameter of the algorithm

Experiment 3 result

Table 3: Frame level phone-state classification accuracy on standard TIMIT test set and execution time in minutes on one Titan X GPU. For RS, we set a time budget of 300 minutes.

	Accuracy %	Time (min)
Vanilla	59.81	12
RS	60.36	300
RTHO	61.97	164
RTHO-NT	61.38	289

Experiment 3 result

Figure 4: The horizontal axis runs with the hyper-batches. Top-left: frame level accuracy on mini-batches (Training) and on a randomly selected subset of the validation set (Validation). Top-right: validation error $E_{\rm val}$ on the same subset of the validation set. Bottom-left: evolution of optimizer hyperparameters η and μ . Bottom-right: evolution of design hyperparameter ρ .