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First Order Methods

Pros:

Easy to implement, scale to large models and datasets, and can
handle noisy gradients

Cons:

Suitable initial learning rate and decay schedule needs to be selected

Requires many runs of training with different hyper-parameters

Pure SGD struggles to escape ‘valleys’ in error surface
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Second Order Methods

Pros:

Perform updates of the form δ = H−1g where H is the Hessian or
some approximation, and g is the gradient of the error function

Makes more progress per step using the curvature information

Cons:

Explicit calculation and storage of Hessian is infeasible for deep
networks
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Contributions

Recursive block-diagonal approximation

Observation that piece-wise linear transformation functions have no
differentiable strict local minima

Relation with KFAC (block diagonal approximation to Fisher matrix)

Experiments on benchmark dataset to show the superiority of second
order methods over tuned first order methods
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Related Work

Efficient computation of full GN matrix-vector products using a form
of automatic differentiation; used to approximately solve the linear
system Ḡδ = ∇f using conjugate gradients to find the parameter
update . CGD - too slow

KFAC in which the Fisher matrix is used as the curvature matrix. The
Fisher matrix is another PSD approximation to the Hessian that is
used in natural gradient descent. In general Fisher matrix and GN
matrix are different.
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Preliminaries

Feed forward neural network is defined as:

hλ = Wλaλ−1

aλ = fλ(hλ)

for 1 ≤ λ < L

Error function is defined as E (hL, y)

Hessian is defined as:

[H]ij =
∂2

∂θi∂θj
E (θ)
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Block Diagonal Hessian

Gradient w.r.t. layer λ is defined with chain rule:

∂E

∂W λ
a,b

=
∑
i

∂hλi
∂W λ

a,b

∂E

∂hλi
= aλ−1b

∂E

∂hλa

Differentiating again will give the sample Hessian:

[Hλ](a,b),(c,d) =
∂2E

∂W λ
a,b∂W

λ
c,d

= aλ−1b aλ−1d [Hλ](a,c)

In matrix form:
Hλ = (aλ−1a

T
λ−1)⊗Hλ

where ⊗ denotes the Kronecker product and Hλ is the pre-activation
Hessian.
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Block Hessian Recursion

In order to calculate the sample Hessian, the pre-activation Hessian is first
evaluated recursively as:

Hλ = BλW
T
λ+1Hλ+1Wλ+1Bλ + Dλ

where the diagonal matrices are:

Bλ = diag(f ′λ(hλ))

Dλ = diag(f ′′λ (hλ)
∂E

∂aλ
)
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Non Differentiable Local Maxima

For piecewise linear functions like ReLU, second derivative is zero and
hence Dλ is zero

Thus if Hλ is PSD, pre-activation matrices are PSD everywhere

If we fix all parameters except Wλ, objective function is convex w.r.t
Wλ where it is twice differentiable

Hence, there can be no saddle points or local maxima of objective
function w.r.t the parameters within a layer

Except, where the transfer function changes regimes

Aleksandar Botev, Hippolyt Ritter, David BarberPractical Gauss-Newton Optimisation for Deep Learning
ICML, 2017 Presenter: Bargav Jayaraman 13

/ 21



Non Differentiable Local Maxima
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Approximate Gauss-Newton Method

Besides being intractable for large neural networks, the Hessian is not
guaranteed to be PSD. A Newton update H−1g could therefore lead
to an increase in the error

A common PSD approximation to the Hessian is the Gauss-Newton
(GN) matrix

For an error E (hL(θ)), the sample Hessian is given by:

∂2E

∂θi∂θj
=

∑
k

∂E

∂hLk

∂2hLk
∂θi∂θj

+
∑
k,l

∂hLk
∂θi

∂2E

∂hLk∂h
L
l

∂hLl
∂θj

Assuming HL is PSD, GN method forms a PSD approximation by
neglecting the first term. GN matrix is given as:

G ≡ JhLθ
T
HLJ

hL
θ ; Ḡ ≡ E[JhLθ

T
HLJ

hL
θ ]p(x ,y)
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GN Matrix as Khatri-Rao Product

Block of matrix corresponding to layers λ and β is given as:

Ḡλ,β = E[JhλWλ

T
JhLhλ

T
HLJ

hL
hβ
J
hβ
Wβ

]

Defining pre-activation GN matrix between layers as:

Gλ,β = JhLhλ
T
HLJ

hL
hβ

and using the fact that JhλWλ
= aTλ−1 ⊗ I , we obtain

Ḡλ,β = E[(aλ−1a
T
β−1)⊗ Gλ,β]

Thus GN matrix can be written as the expectation of the Khatri-Rao
product Ḡ = E[Q ∗ G]
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Approximating GN Diagonal Blocks

Layer-wise GN block can be represented as: Gλ = Qλ ⊗ Gλ and the
expected GN blocks can be calculated as E[Gλ], however this requires
storing values across all data points which can be prohibitive

Proposed approach approximates the blocks as:
E[Gλ] ≈ E[Qλ]⊗ E[Gλ], where E[Qλ] = 1

NAλ−1A
T
λ−1 is the

uncentered covariance of activations

E[Gλ] = E[
∑

k C
k
λC

k
λ
T

] where C k
λ = BλW

T
λ+1C

k
λ+1

This reduces the memory footprint to K × D × N, where K is the
rank of GN matrix. This method is called Kronecker Factored Low
Rank (KFLR).
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Experimental Setup

Datasets - MNIST, CURVES, FACES

Comparison of Second order methods like KFRA and KFCA with first
order methods like SGD, Nesterov Accelerated Gradient, Momentum
and ADAM

First order methods ran with 40,000 parameter updates for MNIST
and CURVES and 160,000 updates for FACES. Second order methods
ran only for 5,000 / 20,000 updates.
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Results
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Summary

Derivation of block-diagonal structure of Hessian matrix

For networks with piece-wise linear transfer functions and convex loss
the objective has no differentiable local maxima

With respect to the parameters of a single layer, the objective has no
differentiable saddle points

Second order methods are feasible and perform better than first order
methods for neural networks
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Extra Slide : Derivation of Block Diagonal Hessian
Recursion
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