Optimization as a model for few-shot learning

Sachin Ravi¹ Hugo Larochelle¹

¹Twitter

ICLR, 2017 Presenter: Beilun Wang

Sachin Ravi, Hugo Larochelle (Twitter) Optimization as a model for few-shot learning

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

- Motivation
- Previous Solutions
- Contributions

2 Proposed Methods

- gradient descent and LSTM
- The Proposed Method

3 Summary

- ∢ ∃ ▶

- ∢ ∃ ▶

Introduction

Motivation

- Previous Solutions
- Contributions

2 Proposed Methods

- gradient descent and LSTM
- The Proposed Method

3 Summary

- ∢ ∃ →

3

Motivation:

- Deep Learning has shown great success in a variety of tasks with large amounts of labeled data.
- Perform poorly on few-shot learning tasks
- This paper uses an LSTM based *meta-learner* model to learn the exact optimization algorithm.

過 ト イヨ ト イヨト

Problem Setting:

- Input: meta-sets \mathscr{D} . For each $D \in \mathscr{D}$ has a split of D_{train} and D_{test} .
- Target: an LSTM-based *meta-learner*.
- Output: a neural network

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

- Motivation
- Previous Solutions
- Contributions

2 Proposed Methods

- gradient descent and LSTM
- The Proposed Method

3 Summary

< 🗇 🕨 < 🖃 🕨

-∢∃>

3

- gradient-based optimization
 - momentum
 - adagrad
 - Adadelta
 - ADAM
- learning to learn
- no strong guarantees of speed of convergence
- meta-learning
 - quick acquisition of knowledge within each separate task presented
 - slower extraction of information learned across all the tasks.

Introduction

- Motivation
- Previous Solutions
- Contributions

Proposed Methods

- gradient descent and LSTM
- The Proposed Method

3 Summary

< 🗇 🕨 < 🚍 🕨

- ∢ ∃ ▶

3

- An LSTM based meta-learner model
- Achieve better performance in few-shot learning task

<ロト < 四ト < 回ト < 回ト < 回ト = 三日

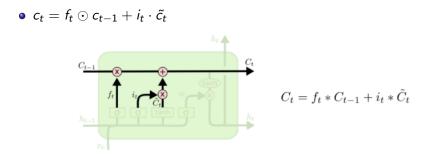
Introduction

- Motivation
- Previous Solutions
- Contributions

2 Proposed Methods

- gradient descent and LSTM
- The Proposed Method

3 Summary


3

・ 何 ト ・ ヨ ト ・ ヨ ト

•
$$\theta_t = \theta_{t-1} - \alpha_t \nabla_{\theta_{t-1}} \mathcal{L}_t$$

◆□> ◆圖> ◆国> ◆国> 三頭

the Update for the cell state in an LSTM

- if $f_t = 1$, $c_{t-1} = \theta_{t-1}$, $i_t = \alpha_t$, and $\tilde{c}_t = -\nabla_{\theta_{t-1}} \mathcal{L}_t$
- Then it equals to gradient-based approach.

Introduction

- Motivation
- Previous Solutions
- Contributions

2 Proposed Methods

- gradient descent and LSTM
- The Proposed Method

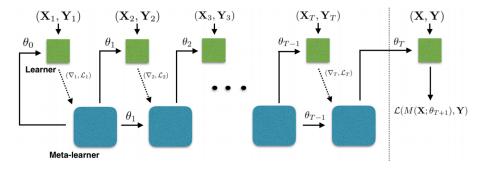
3 Summary

3

・ 何 ト ・ ヨ ト ・ ヨ ト

• learning rate *i*_t:

•
$$i_t = \sigma(\mathbf{W}_I \cdot [\nabla_{\theta_{t-1}} \mathcal{L}_t, \mathcal{L}_t, \theta_{t-1}, i_{t-1}] + \mathbf{b}_I)$$


•
$$f_t = \sigma(\mathbf{W}_F \cdot [\nabla_{\theta_{t-1}} \mathcal{L}_t, \mathcal{L}_t, \theta_{t-1}, f_{t-1}] + \mathbf{b}_F)$$

- 王

イロン イ理 とく ヨン ト ヨン・

- Share parameters across the coordinates of the learner gradient
- Each dimension has its own hidden and cell state values but the LSTM parameters are the same across all coordinates.
- Normalization the gradients and the losses across different dimensions

$$x \to \begin{cases} & \left(\frac{\log(|x|)}{p}, \operatorname{sign}(x)\right) \text{ if } |x| \ge e^{-p} \\ & \left(-1, e^{p}x\right) \text{ otherwise} \end{cases}$$
(1)

- 문

(本部) (本語) (本語)

Model	5-class	
	1-shot	5-shot
Baseline-finetune	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$
Baseline-nearest-neighbor	$41.08\pm0.70\%$	$51.04 \pm 0.65\%$
Matching Network	$43.40 \pm \mathbf{0.78\%}$	$51.09 \pm 0.71\%$
Matching Network FCE	$43.56 \pm \mathbf{0.84\%}$	$55.31 \pm 0.73\%$
Meta-Learner LSTM (OURS)	$43.44 \pm \mathbf{0.77\%}$	$60.60 \pm \mathbf{0.71\%}$

Table 1: Average classification accuracies on Mini-ImageNet with 95% confidence intervals. Marked in bold are the best results for each scenario, as well as other results with an overlapping confidence interval.

イロト イポト イヨト イヨト

- This paper proposes an LSTM based meta-learner model.
- It improves the performance of training deep Neural networks in few-shot learning tasks.

▲撮▶ ★ 国▶ ★ 国▶