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Curriculum Learning (CL)

“The importance of starting small” (Ellman, 1993)

CL is highly sensitive to the mode of progression through the tasks

Previous methods: tasks can be ordered by difficulty

in reality they may vary along multiple axes of difficulty, or have no
predefined order at all

This paper: treat the decision about which task to study next as a
stochastic policy, continuously adapted to optimise some notion of
“learning progress”
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Curriculum Learning Task

Each example x ∈ X contains input a and target b:

Task: a distribution D over sequences from X

Curriculum: an ensemble of tasks D1, ... , DN

Sample: an example drawn from one of the tasks of the curriculum

Syllabus: a time-varying sequence of distributions over tasks

The expected loss of the network on the kth task is

Lk(θ) := Ex∼Dk
L(x , θ) (1)

Where L(x , θ) := −logpθ(x) is the sample loss on x
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Curriculum Learning: Two related settings

1 Multiple tasks setting: Perform well on all tasks in {Dk}:

LMT :=
1

N

N∑
k=1

Lk (2)

2 Target task setting: Only interested in minimizing the loss on the
final task DN :

LTT := LN (3)

The other tasks act as a series of stepping stones to the real problem
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Multi-Armed Bandits for CL

Model a curriculum containing N tasks as an N-armed bandit

Syllabus: adaptive policy which seeks to maximize payoffs from bandit

An agent selects a sequence of actions a1...aT over T rounds of play
(at ∈ {1, ...N})
After each round, the selected arm yields a reward rt
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Exp3 Algorithm for Multi-Armed Bandits

On round t, the agent selects an arm stochastically according to policy πt .
This policy is defined by a set of weights wt,i :

πEXP3
t (i) :=

ewt,i∑N
j=1 e

wt,j
(4)

The weights are the sum of importance-sampled rewards:

wt,i := η
∑
s<t

r̃s,i (5)

r̃s,i :=
rsI[as=i ]

πs(i)
(6)
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Learning Progress Signals for CL

Goal: use the policy output by Exp3 as a syllabus for training our
models

Ideally: policy should maximize the rate at which we minimize the loss,
and the reward should reflect this rate
Hard to measure effect of a training sample on the target objective

Method: Introduce defined measures of progress:

Loss-driven: equate reward with a decrease in some loss
Complexity-driven: equate reward with an increase in model complexity
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Training for Intrinsically Motivated Curriculum Learning

T rounds, N number of tasks
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Loss-driven Progress

Loss-driven Progress: Compare the predictions made by the model before
and after training on some sample x

1. Prediction Gain (PG)

VPG := L(x , θ)− L(x , θ′) (7)

2. Gradient prediction Gain (GPG)

L(x , θ′) ≈ L(x , θ) + [∇L(x , θ)]T∆θ (8)

where ∆θ is the descent step, −∇θL(x , θ)

VGPG := ||∇L(x , θ)||22 (9)
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Loss-driven Progress

Loss-driven Progress: Compare the predictions made by the model before
and after training on some sample x

3. Self prediction Gain (SPG)

VSPG := L(x ′, θ)− L(x ′, θ′) x ′ ∼ Dk (10)

4. Target prediction Gain (TPG)

VTPG := L(x ′, θ)− L(x ′, θ′) x ′ ∼ DN (11)

5. Mean prediction Gain (MPG)

VTPG := L(x ′, θ)− L(x ′, θ′) x ′ ∼ Dk , k ∼ UN (12)
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Complexity-driven Progress

So far: considered gains that gauge the networks learning progress
directly, by observing the rate of change in its predictive ability

Now: turn to a set of gains that instead measure the rate at which
the networks complexity increases
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Minimum Description Length (MDL) principle

In order to best generalize from a particular dataset, one should
minimize: (# of bits required to describe the model parameters) +
(# of bits required for the model to describe the data)

I.e., increasing the model complexity by a certain amount is only
worthwhile if it compresses the data by a greater amount

Therefore, complexity should increase most in response to the training
examples from which the network is best able to generalize

These examples are exactly what we seek when attempting to
maximize learning progress
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Background: Variational Inference (from David Blei)
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Minimum Description Length (MDL) principle

MDL training in neural nets uses a variational posterior Pφ(θ) over
the network weights during training with a single weight sample
drawn for each training example

The parameters φ of the posterior are optimized rather than θ itself.
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Varational Loss in Neural Nets

LVI (φ, ψ) = KL(Pφ||Qψ) +
∑
k

∑
x∈Dk

Eθ∼PφL(x , θ) (13)

LVI (x , φ, ψ) =
1

S
KL(Pφ||Qψ) + Eθ∼PφL(x , θ) (14)
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Complexity-driven Progress for Variational Inference

Variational Complexity Gain (VPG)

VVPG := KL(Pφ′ ||Qψ′)− KL(Pφ||Qψ) (15)

Gradient Variational Complexity Gain (VPG)

VGVPG := [∇φ,ψKL(Pφ||Qψ)]T∇φEφ∼PφL(x , θ) (16)
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Complexity-driven Progress for Maximum Likelihood

L2 Gain (L2G)

LL2(x , θ) := L(x , θ) +
α

2
||θ||22 (17)

VL2G := ||θ′||22−||θ||22 (18)

VGL2G := [θ]T∇θL(x , θ) (19)
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Experiments

Applied the previously defined gains in 3 tasks using the same LSTM
model

1 synthetic language modelling on text generated by n-gram models
2 repeat copy (Graves et al., 2014)
3 bAbI tasks (Weston et al., 2015)
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N-Gram Language Modeling

Trained character level Kneser-Ney n-gram models on the King James
Bible data from the Canterbury corpus, with the maximum depth
parameter n ranging between 0 to 10

Used each model to generate a separate dataset of 1M characters,
which were divided into disjoint sequences of 150 characters

Since entropy decreases in n, learning progress should be higher for
larger n, and thus the gain signals to be drawn to higher n
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N-Gram Language Modeling
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Repeat Copy

Network receives an input sequence of random bit vectors, and is then
asked to output that sequence a given number of times.

Sequence length varies from 1-13, and Repeats vary from 1-13 (169
tasks in total)

Target task is length 13 sequences and 13 repeats

NTMs are able to learn a for-loop like algorithm on simple examples
that can directly generalise to much harder examples. LSTMs require
significant retraining for harder tasks
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Repeat Copy
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bAbI

20 synthetic question-answering tasks

Some of the tasks follow a natural ordering of complexity (e.g. Two
Arg Relations, Three Arg Relations) and all are based on a consistent
probabilistic grammar, leading us to hope that an efficient syllabus
could be found for learning the whole set

The usual performance measure for bAbI is the number of tasks
completed by the model, where completion is defined as getting less
than 5% of the test set questions wrong
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bAbI
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Conclusion

Using a stochastic syllabus to maximise learning progress can lead to
significant gains in curriculum learning efficiency, so long as a a
suitable progress signal is used

Uniformly sampling from all tasks is a surprisingly strong benchmark
→ learning is dominated by gradients from the tasks on which the
network is making fastest progress, inducing a kind of implicit
curriculum, albeit with the inefficiency of unnecessary samples
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