An Overview of Gradient Descent Optimization Algorithms Presenter: Ceyer Wakilpoor

Sebastian Ruder

Insight Centre for Data Analytics

June 2017

Sebastian Ruder (Insight Centre for Data AnAn Overview of Gradient Descent Optimizatic

Introduction Basics

2 Gradient Descent Variants

- Basic Gradient Descent Algorithms
- Limitations

3 Gradient Descent Optimization Algorithms

Visualization

5 What to Use

6 Parallelizing and Distributing SGD

- Basics
- 2 Gradient Descent Variants
 - Basic Gradient Descent Algorithms
 - Limitations

3 Gradient Descent Optimization Algorithms

- 4 Visualization
- 5 What to Use
- 6 Parallelizing and Distributing SGD
- 7 Additional Strategies

- Gradient descent optimizers are commonly used as black-box optimizers
- The goal of this paper is to provide intuitions regarding the behaviour of different algorithms in practice
- Goes over the motivation behind different algorithms and their derivation

Introduction Basics

2 Gradient Descent Variants

- Basic Gradient Descent Algorithms
- Limitations

3 Gradient Descent Optimization Algorithms

4 Visualization

5 What to Use

6 Parallelizing and Distributing SGD

- Gradient descent is a way to minimize an objective function $J(\theta)$
- Updating θ in the direction opposite of the gradient of $J(\theta)$ w.r.t. θ
- $\bullet\,$ There's a learning rate η that scales how far in the negative gradient direction you update the weights

•
$$\theta_+ = \theta_0 - \eta \cdot \frac{\partial J(\theta)}{\partial \theta}$$

2 Gradient Descent Variants

- Basic Gradient Descent Algorithms
- Limitations

3 Gradient Descent Optimization Algorithms

4 Visualization

5 What to Use

6 Parallelizing and Distributing SGD

IntroductionBasics

2 Gradient Descent Variants

- Basic Gradient Descent Algorithms
- Limitations

3 Gradient Descent Optimization Algorithms

4 Visualization

5 What to Use

6 Parallelizing and Distributing SGD

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta)$$

- Most straight forward GD method, update parameters once per iteration of whole training dataset
- Intractable when whole data set can't fit in memory
- Can't train online (with new examples on-the-fly)
- Batch GD is guaranteed to converge to the global minimum for convex error surfaces and to local minimum otherwise

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta; x^{(i)}; y^{(i)})$$

- SGD performs an update for every training example, which means you can do online training
- SGD updates have much higher variance which causes the objective function to fluctuate heavily

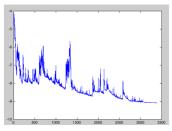


Figure 1: SGD fluctuation (Source: Wikipedia)

- It is much faster since there are fewer repeated gradient computations; this happens because the weights are changed after every training example
- The large fluctuations can be useful in getting to better local minimum, but for convergence to an exact minimum it can be worse
 - Needed to decrease learning rate through steps in order to match the convergence claims of batch gradient descent

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta; x^{(i:i+n)}; y^{(i:i+n)})$$

- Best of both worlds: performs update for every mini-batch of *n* training examples
 - This will reduce the variance of the parameter updates, leading to a more stable convergence
 - Can avoid redundant computations and makes use of highly optimized matrix optimizations common state-of-the-art deep learning libraries
- Common mini-batch sized range between 50 and 256
- SGD is commonly used to refer to mini-batch GD as well
- Vanilla mini-batch GD does not guarantee good convergence

Batch GD

```
for i in range(nb_epochs):
    params_grad = evaluate_gradient(loss_function, data, params)
    params = params - learning_rate * params_grad
```

SGD

```
for i in range(nb_epochs):
    np.random.shuffle(data)
    for example in data:
        params_grad = evaluate_gradient(loss_function, example, params)
        params = params - learning_rate * params_grad
```

Mini-batch GD

```
for i in range(nb_epochs):
    np.random.shuffle(data)
    for batch in get_batches(data, batch_size=50):
        params_grad = evaluate_gradient(loss_function, batch, params)
        params = params - learning_rate * params_grad
```

< 3 > < 3 >

2 Gradient Descent Variants

- Basic Gradient Descent Algorithms
- Limitations

3 Gradient Descent Optimization Algorithms

4) Visualization

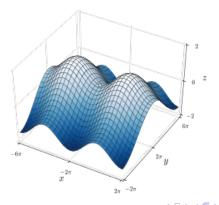
5 What to Use

- 6 Parallelizing and Distributing SGD
- 7 Additional Strategies

- Choosing a proper learning rate: too small will take too long and too large can lead to divergence
- Constant learning rate through learning process usually is not ideal, so need to schedule learning rate changes in a predefined way
 - Fail to take into account properties of data, may want to update more for rarely occurring features
- Deep learning leads to very complex non-convex error functions
 - Get stuck in local minima, or more commonly in saddle points

Saddle Points

- A point where one dimension slopes up while another slopes down, usually surrounded by a plateau of about equal error
- Regardless of the direction GD goes, it is difficult to escape because the surrounds gradients are usually around zero



2 Gradient Descent Variants

- Basic Gradient Descent Algorithms
- Limitations

Gradient Descent Optimization Algorithms

- Visualization
- 5 What to Use
- 6 Parallelizing and Distributing SGD
- 7 Additional Strategies

Momentum

$$v_t = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta)$$
$$\theta = \theta - v_t$$

- γ is usually selected to be around .9
- SGD has trouble navigating areas where the surface curves more steeply in one dimension than in another (ravines)
- This is common around local minima
- Like a ball rolling down a valley, increase gradient for dimension that stays constant and decrease for the dimension that changes direction
- Leads to faster convergence and fewer oscillations

(b) SGD with momentum

38

Figure 2: Source: Genevieve B. Orr

Sebastian Ruder (Insight Centre for Data	nAn Overview of Gradient Descent Optimization	June 2017 18 /
---	---	----------------

Nesterov Accelerated Gradient

- Notion of ball knowing to slow down when hill slopes up again
- Only difference is the gradient is computed of the predicted next parameter values (looking ahead)

$$v_t = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma v_{t-1})$$
$$\theta = \theta - v_t$$

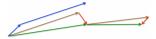


Figure 3: Nesterov update (Source: G. Hinton's lecture 6c)

• Prevents us from going too fast and results in significant increase in performance of RNNs

- Allows individualized parameter update depending on importance, larger updates for infrequent parameters and smaller updates for frequent ones
- Well suited for sparse data, uses different learning rate for every parameter at every time step

$$g_{t,i} = \nabla_{\theta_t} J(\theta_{t,i})$$
$$\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{G_{t,ii} + \epsilon}} \cdot g_{t,i}$$
$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \epsilon}} \odot g_t$$

- $G_t \in \mathbb{R}^{d \times d}$ where each diagonal element *i*, *i* is the sum of the squared for the gradients w.r.t. θ
- $\bullet \ \epsilon$ is the smoothing term to avoid dividing by zero
- Learning rate usually by default set to .01
- Accumulates squared gradients in the denominator so can stop learning eventually

- Works to solve the issue of monotonically decreasing learning rate
- Fixes sum of gradients window to some fixed size w
- In order to avoid storing all the gradients, just use a decaying average:

$$E[g^2]_t = \gamma E[g^2]_{t-1} + (1-\gamma)g_t^2$$

- keep γ usually around .9 similar to momentum
- Simply replace our previous Adagrad update rule with an exponentially decaying average

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} g_t$$

• They wanted the update units to match the parameter so they used the square of the parameters instead of the gradients in lieu of the learning rate:

$$E[\Delta\theta^{2}]_{t} = \gamma E[\Delta\theta^{2}]_{t-1} + (1-\gamma)\Delta\theta_{t}^{2}$$
$$RMS[\Delta\theta]_{t} = \sqrt{(E[\Delta\theta^{2}]_{t} + \epsilon}$$
$$\Delta\theta_{t} = -\frac{RMS[\Delta\theta]_{t-1}}{RMS[g]_{t}}g_{t}$$
$$\theta_{t+1} = \theta_{t} + \Delta\theta_{t}$$

• Identical to the first steps of derivation for Adadelta

$$E[g^{t}]_{t} = .9E[g^{2}]_{t-1} + .1g_{t}^{2}$$
$$\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{E[g^{2}]_{t} + \epsilon}}g_{t}$$

- Suggested γ of .9 and η of .001
- Avoids radically diminishing learning rate from Adagrad

- Adaptive Moment Estimation
- In addition to storing exponentially decaying average of past squared gradients, v_t, also keeps exponentially decaying average of past gradients, m_t

$$egin{aligned} m_t &= eta_1 m_{t-1} + (1 - eta_1) g_t \ v_t &= eta_2 v_{t-1} + (1 - eta_2) g_t^2 \end{aligned}$$

• Estimates of the first moment (the mean) and the second moment (the uncentered variance) of the gradient respectively

Adam

• Avoid zero bias, especially at initial time steps:

$$\hat{m}_t = rac{m_t}{1-eta_1^t}$$
 $\hat{v}_t = rac{v_t}{1-eta_2^t}$

• Yields final update rule:

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

- Estimates of the first moment (the mean) and the second moment (the uncentered variance) of the gradient respectively
- Suggested default values of .9 for β_1 , .999 for β_2 , and 10^{-8} for ϵ
- Shown to work better than other methods

 Scales gradient inversely proportionally to the l₂ norm of the past gradients

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) |g_t|^2$$

• Using I_{∞} :

$$u_t = \beta_2^{\infty} v_{t-1} + (1 - \beta_2^{\infty}) |g_t|^{\infty}$$
$$= max(\beta_2 \cdot v_{t-1}, |g_t|)$$
$$\theta_{t+1} = \theta_t - \frac{\eta}{u_t} \hat{m}_t$$

- using the max operation avoids bias towards zero
- Good default values are $\eta = .002$, $\beta_1 = .9$, and $\beta_2 = .999$

Nadam

• Combine NAG and Adam, first incorporate NAG into Adam:

$$g_t = \nabla_{\theta_t} J(\theta_t - \gamma m_{t-1})$$
$$m_t = \gamma m_{t-1} + \eta g_t$$
$$\theta_{t+1} = \theta_t - m_t$$

 To avoid extra computation, we can use m_t to look ahead instead of computing the momentum for t-1 and t

$$g_t = \nabla_{\theta_t} J(\theta_t)$$

$$m_t = \gamma m_{t-1} + \eta g_t$$
$$\theta_{t+1} = \theta_t - (\gamma m_t + \eta g_t)$$

Nadam

 Including Nesterov momentum to Adam, first take our previous derivation of Adam and expand the terms:

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}$$
$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$
$$t+1 = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} (\beta_1 \hat{m}_{t-1} + \frac{(1 - \beta_1) g_t}{1 - \beta_1^t})$$

• Look ahead like we did on the previous slide:

θ

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} (\beta_1 \hat{m}_t + \frac{(1 - \beta_1)g_t}{1 - \beta_1^t})$$

2 Gradient Descent Variants

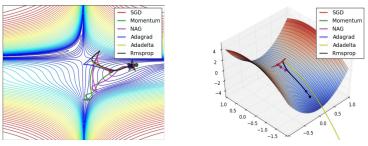
- Basic Gradient Descent Algorithms
- Limitations

Gradient Descent Optimization Algorithms

Visualization

5 What to Use

6 Parallelizing and Distributing SGD



(a) SGD optimization on loss surface contours

(b) SGD optimization on saddle point

- (A 🖓

Figure 4: Source and full animations: Alec Radford

2 Gradient Descent Variants

- Basic Gradient Descent Algorithms
- Limitations

3 Gradient Descent Optimization Algorithms

Visualization

5 What to Use

Parallelizing and Distributing SGD

- For sparse data use an adaptive learning-rate method
- RMSprop is an extension of Adagrad but fixes the diminishing learning rate issue
- Adadelta is like RMSprop uses RMS of parameter updates in in numerator of update rule
- Adam adds bias-correction and momentum to RMSProp, Adam generally performs slightly better especially towards the end as gradients become sparser
- Vanilla SGD can be effective, but take a long time and is sensitive to annealing and initialization
- For faster convergence and for deep, complex neural networks use one of the adaptive learning rate methods

2 Gradient Descent Variants

- Basic Gradient Descent Algorithms
- Limitations

3 Gradient Descent Optimization Algorithms

4 Visualization

5 What to Use

6 Parallelizing and Distributing SGD

Parallelizing and Distributing SGD

- Hogwild!
 - Processors are allowed to access shared memory without locking parameters, works well with sparse data, allows SGD updates in parallel on CPUs
 - Achieves almost optimal rate of convergence, as it is unlikely that processors will overwrite useful info
- DownpourSGD
 - Multiple replicas of model ran in parallel
 - Risk of divergence from each other since information isn't shared
 - Each device solves subset
- TensorFlow
 - Utilizes computation graph which uses Send/Receive node pairs between devices
- Elastic Averaging SGD
 - Central server for parameters, meant to keep local variables further from center variable

2 Gradient Descent Variants

- Basic Gradient Descent Algorithms
- Limitations

3 Gradient Descent Optimization Algorithms

4 Visualization

5 What to Use

Parallelizing and Distributing SGD

- Shuffling and Curriculum Learn
 - Shuffle data in between epochs
 - For certain difficult problems, training examples can be presented in meaningful order: Curriculum Learning
- Batch Normalization
 - Normalize initial values of parameters by initializing them with zero mean and unit variance, but we lose normalization as we train
 - Reestablish normalization for every mini-batch, can avoid the need of dropout
- Early Stopping
 - Should be done when validation error stops improving
- Gradient Noise
 - Adding noise that follow Gaussian distribution $N(0, \sigma_t^2)$ to each update

$$g_{t,i} = g_{t,i} + N(0, \frac{\eta}{(1+t)^{\gamma}})$$

