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Introduction

Classifiers are vulnerable to worst-case (adversarial) perturbations of
the datapoints.

Classifiers are relatively robust to random noise.

Worst-case noise is only a specific type of noise. This paper focuses
on a semi-random noise regime that generalizes both the random and
worst-case noise regime, provides theoretical bounds on the
robustness of classifiers in this general regime.
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Background

Random noise regime: datapoints are perturbed by noise with random
direction in the input space.

Semi-random regime: random subspaces of arbitrary dimension,
where a worst-case perturbation is sought within the subspace.

Well-sought perturbations of the data can easily cause
misclassification, because data points lie very close to the decision
boundary.
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Contribution

Robustness of classifiers depends on the curvature of the decision
boundary: (d denotes the dimension of the data, l is the distance
from the datapoint to the classification boundary)

Random regime: robustness =
√
d × l , when curvature is sufficiently

small. ⇒ In high dimensional classification problems, robustness to
random noise can be achieved, even when datapoints are very close to
decision boundary.
Semi-random regime: robustness =

√
d/m × l , m is the dimension of

the subspace. Even when m is chosen as a small fraction of the
dimension d , it is still possible to find small perturbations that cause
data misclassification.
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Definitions and notations

An L-class classifier: f : Rd → RL

Given an datapoint x0 ∈ Rd , k̂(x0) = argmaxk fk(x0)

S is an arbitrary subspace of Rd of dimension m, r∗s is the
perturbation in S of minimal norm that is required to change the
estimated label of f at x0:

r∗S(x0) = argmin
r∈S
||r ||2s.t.k̂(x0 + r) 6= k̂(x0) (1)

r∗S(x0) = argmin
r∈S
||r ||2s.t.∃k 6= k̂(x0) : fk(x0 + r) ≥ fk̂(x0)(x0 + r) (2)

When S = Rd , r∗(x0) := r∗Rd (x0) is the adversarial perturbation.

||r∗(x0)|| is the minimal distance from x0 to the classifier boundary
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Definitions and notations

Random noise regime: S is a one-dimensional subspace (m = 1) with
direction v , where v is a random vector sampled uniformly from the
unit sphere Sd−1

Semi-random noise regime: S is a random space, the span of m
independent vectors drawn uniformly at random from Sd−1

In the rest of slides, fix x0, use r∗S instead of r∗S(x0) and k̂ instead of

k̂(x0)
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Robustness of affine classifiers

Theorem (1)

Let δ > 0 and S be a random m-dimensional subspace of Rd , and f be a
L-class affine classifier. Let

ζ1(m, δ) =

(
1 + 2

√
ln(1/δ)

m
+

2 ln(1/δ)

m

)−1

(3)

ζ2(m, δ) =

(
max

(
(1/e)δ2/m, 1−

√
2(1− δ2/m)

))−1

(4)

The following inequalities hold between the robustness to semi-random
noise ||r∗S ||2, and the robustness to adversarial perturbations ||r∗||2:

√
ζ1(m, δ)

√
d

m
||r∗||2 ≤ ||r∗S ||2 ≤

√
ζ2(m, δ)

√
d

m
||r∗||2 (5)

with probability exceeding 1− 2(L + 1)δ.
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Robustness of affine classifiers

ζ1(m, δ) and ζ2(m, δ) are independent of the data dimension d

For sufficiently large m, ζ1(m, δ) and ζ2(m, δ) are very close to 1 but
the difference is much larger when m = 1
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Robustness of affine classifiers

√
ζ1(m, δ)

√
d
m ||r

∗||2 ≤ ||r∗S ||2 ≤
√
ζ2(m, δ)

√
d
m ||r

∗||2

Random noise regime(m = 1): Θ(
√
d ||r∗||2), in high dimensional

classification, affine classifiers can be robust to random noise

Semi-random regime: when m is sufficiently large,
||r∗S ||2 ≈

√
d/m||r∗||2(because ζ1(m, θ) ≈ ζ2(m, θ) ≈ 1).

Semi-random robustness can remain small even m is chosen to be a
very small faction of d .

Conclusion: for semi-random noise that is mostly random and mildly
adversarial, affine classifiers remain vulnerable to such noise. (When
m = 0.01d , semi-random robustness is only 10||r∗||2 with high
probability)
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Decision boundary curvature

Pairwise boundary Bi ,j as the boundary of binary classifier where only
class i and class j are considered: Bi ,j = {x ∈ Rd : fi (x)− fj(x) = 0}
Bi ,j seperates two regions of Rd :

Ri = {x ∈ Rd : fi (x) > fj(x)}

Rj = {x ∈ Rd : fj(x) > fi (x)}
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Decision boundary curvature

Curvature: global bending of the decision boundary by inscribing balls
in the regions separated by the decision boundary. For a given
p ∈ Bi ,j , we define qi ||j(p) to be the radius of the largest open ball
included in the region Ri that intersects with Bi ,j at p; i.e.,

qi ||j(p) = sup
z∈Rd

{‖z− p‖2 : B(z, ‖z− p‖2) ⊆ Ri} , (6)

where B(z, ‖z− p‖2) is the open ball in Rd of center z and radius
‖z− p‖2.
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Decision boundary curvature

qi ||j(p) 6= qj ||i (p) as the radius of the largest ball one can inscribe in
both regions need not be equal. So define a symmetric quantity
qi ,j(p) = min(qi ||j(p), qj ||i (p))

To measuer the global curvature, the worst-case radius is taken over
all points on the decision boundary, i.e.,

q(Bi ,j) = inf
p∈Bi,j

qi ,j(p), (7)

κ(Bi ,j) =
1

q(Bi ,j)
. (8)

The curvature κ(Bi ,j) is simply defined as the inverse of the
worst-case radius over all points p on the decision boundary
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Decision boundary curvature

Affine classifiers: κ(Bi ,j) = 0, as it is possible to inscribe balls of
infinite radius inside each region of the space

In general, the quantity κ(Bi ,j) provides an intuitive way of describing
the nonlinearity of the decision boundary by fitting balls inside the
classification regions.

A precise characterization of the robustness to semi-random and
random noise of nonlinear classifiers in terms of the curvature of the
decision boundaries κ(Bi ,j).
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Binary classification

First study binary classification problem, where only classes k̂ and
k ∈ {1, . . . , L}\{k̂} are considered

Bk := Bk,k̂ is the decision boundary between class k and k̂,

rkS = argmin
r∈S
||r ||2 s.t. fk(x0 + r) ≥ fk̂(x0 + r), (9)

rk = argmin
r
||r ||2 s.t. fk(x0 + r) ≥ fk̂(x0 + r). (10)

The global quatities r∗s and r∗ are obtained from rks and rk by taking
the vectors with minimum norm over all classes k
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Binary classfification

Theorem (2)

Let S be a random m-dimensional subspace of Rd . Let κ := κ(Bk).
Assuming that the curvature satisfies

κ ≤ C

ζ2(m, δ)||rk ||2
m

d
,

the following inequality holds between the semi-random robustness ||rkS ||2
and the adversarial robustness ||rk ||2:

(
1− C1||r

k ||2κζ2(m, δ)
d

m

)√
ζ1(m, δ)

√
d

m
≤
||rkS ||2
||rk ||2

≤
(

1 + C2||r
k ||2κζ2(m, δ)

d

m

)√
ζ2(m, δ)

√
d

m
(11)

with probability larger than 1− 4δ. The constants are
C = 0.2,C1 = 0.625,C2 = 2.25.
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Binary classification

Bounds relating the robustness to random and semi-random noise to
the worst-case robustness can be extended to nonlinear classifiers,
provided the curvature of the boundary κ(Bk) is sufficiently small.

In the case of linear classifiers, we have κ(Bk) = 0, and we recover
the result for affine classifiers from Theorem 1.
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Multi-class classification

To extend this result to multi-class classification,if k denotes a class
that has no boundary with class k̂, we have ||rk ||2 =∞, and the
previous curvature condition cannot be satisfied.

It is therefore crucial to exclude such classes that have no boundary
in common with class k̂, or more generally, boundaries that are far
from class lab. We define the set A of excluded classes k where ||rk ||2
is large

A = {k : ||rk ||2 ≥ 1.45
√
ζ2(m, θ)

√
d

m
||r∗||2}. (12)

Note that A is independent of S, and depends only on d , m and δ.
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Multi-class classification

Corollary

Let S be a random m-dimensional subspace of Rd . Assume that, for all
k /∈ A, we have

κ(Bk)||rk ||2 ≤
0.2

ζ2(m, δ)

m

d
(13)

Then, we have

0.875
√
ζ1(m, δ)

√
d

m
||r∗||2 ≤ ||r∗S ||2 ≤ 1.45

√
ζ2(m, δ)

√
d

m
||r∗||2 (14)

with probability larger than 1− 4(L + 2)δ.
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Multi-class classification

||r∗S ||2 is precisely related to the adversarial robustness ||r∗||2 by a
factor of

√
d/m.

Random regime (m = 1): factor
√
d shows that in high dimensional

classification problems, classifiers with sufficiently flat boundaries are
much more robust to random noise than to adversarial noise.The
addition of a sufficiently small random noise does not change the
label of the image, even if the image lies very closely to the decision
boundary (i.e., ||r∗||2 is small).

Semi-random regime: an adversarial perturbation is found on a
randomly chosen subspace of dimension m, the

√
d/m factor shows

that robustness to semi-random noise might not be achieved even if
m is chosen to be a tiny fraction of d (e.g., m = 0.01d).If a classifier
is highly vulnerable to adversarial perturbations, then it is also
vulnerable to noise that is overwhelmingly random and only mildly
adversarial (i.e. worst-case noise sought in a random subspace of low
dimensionality m).
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Estimation of robustness

Theoretical results show that the robustness ||r∗S(x)||2 of classifiers
satisfying the curvature property precisely behaves as

√
d/m||r∗(x)||2.

Define

β(f ;m) =
√

m/d
1

|D|
∑
x∈D

||r∗S(x)||2
||r∗(x)||2

,

where S is chosen randomly for each sample x and D denotes the test
set. β should ideally be equal to 1 (for sufficiently large m).
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Estimation of robustness

β is suprisingly close to 1, even when m is a small fraction of d ⇒
quantitative analysis provide very accurate estimates of the robustness
to semi-random noise.
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Table 1 suggests that the decision boundaries of these classifiers have
limited curvature κ(Bk), as this is a key assumption of the theoretical
findings. So visualize two-dimensional sections of the classifiers’
boundary in three different settings.

Curvature assumption holds in practice, the curvature of such
classifiers is very small.
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Demonstration

S is the span of random translated and scaled versions of words
“NIPS”, “SPAIN” and “2016” in an image, such that
b(d/m)c = 228. The resulting perturbations in the subspace are
therefore linear combinations of these words with different intensities.
Imperceptibly small structured messages can be added to an image
causing data misclassification.
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Summary

Precisely characterize the robustness of classifiers in a novel
semi-random noise regime that generalizes the random noise regime.
Bounds depend on the curvature of the decision boundary, the data
dimension, and the dimension of the subspace to which the
perturbation belongs.

When the decision boundary has a small curvature, classifiers are
robust to random noise in high dimensional classification problems
(even if the robustness to adversarial perturbations is relatively small).
Moreover, for semi-random noise that is mostly random and only
mildly adversarial (i.e., the subspace dimension is small),
state-of-the-art classifiers remain vulnerable to such perturbations.
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