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Motivation

Context: data injection attack (adversarial data added to existing
distribution)

Past work assumes attacker has knowledge of learner’s algorithm (or
can query for it)

Here, consider both informed and blind attacker

Statistical privacy - users may want to protect data via noise

Objective: adversary makes it difficult to estimate distr. params
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Notation

Distribution of interest: Fθ → density fθ, family F , data Xi

Malicious distribution: Gφ → density gφ, family G, data X ′i

Combined dataset: Z , distribution P

p(z) = αfθ(z) + (1− α)gφ(z)
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Minimax

Minimax risk - worst-case bound on population risk of estimator:

Mn = inf
ψ̂

sup
ψ∈Ψ

EZ1:n∼Pn
ψ
L(ψ, ψ̂n)

Intuitively: minimum worst-case risk = minimum worst-case expected
`2-norm

KL-Divergence - deviation between two distributions
Mutual information I (Z ,V ) - measure of dependence between random
variables
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Bounds

Le Cam:

Mn ≥ L(ψ1, ψ2)

[
1

2
− 1

2
√

2

√
nDKL(Pφ1 ,Pφ2

]
Fano:

Mn ≥ δ
[

1− I (Z1:n;V ) + log2

log |V|

]
I (Z ,V ) upper-bounded by DKL
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Blind Attacker, Informed Learner

Attacker knows F but not Fθ, learner knows Gφ
Objective: maximize Mn by choice of Gφ

φ∗ = argmaxφMn = argmaxφinf
ψ̂

sup
ψ∈Ψ

EZ1:n∼Pn
ψ
L(ψ, ψ̂n)

Minimize KL-Divergence

φ̂ = argminφ
∑
θi∈V

∑
θj∈V

DKL(Pθi ,φ||Pθj ,φ) ≥ |V|
2

n
I (Zn; θ)
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Blind Attacker, Blind Learner

Learner does not know Gφ, but knows G

G∗ = argmaxinf
θ̂

sup
(Fθ,Gφ)∈F×G

EZ1:nL(θ, θ̂)

Ĝ = argminG
∑

(θi ,φi )∈V

∑
(θj ,φj )∈V

DKL(Pθi ,φi ||Pθj ,φj ) ≥
|V|2

n
I (Zn; θ)

Alex Beatson, Zhaoran Wang, Han Liu (Northwestern University and Intel Corporation)Blind Attacks on Machine Learners
NIPS, 2016/ Presenter: Anant Kharkar 11

/ 16



Outline

1 Introduction
Motivation

2 Bounds
Minimax
Problem Scenarios

3 Results
Informed Learner
Blind Learner

4 Summary

Alex Beatson, Zhaoran Wang, Han Liu (Northwestern University and Intel Corporation)Blind Attacks on Machine Learners
NIPS, 2016/ Presenter: Anant Kharkar 12

/ 16



Informed Learner

DKL(Pi ||Pj) + DKL(Pj ||Pi ) ≤
α2

(1− α)
‖Fi − Fj‖2

TVVol(Z)

Le Cam bound:

Mn ≥ L(θ1, θ2)

(
1

2
− 1

2
√

2

√
α2

(1− α)
n‖F1 − F2‖2

TVVol(Z)

)

Fano bound:

Mn ≥ δ

(
1−

α2

(1−α)Vol(Z)nτδ + log2

log |V|

)

Uniform attack bounds effective sample size at n α2

(1−α)Vol(Z)
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Informed Learner

For α ≤ 1
2 - attacker can make learning impossible (KL-divergences sum to

0)
Mimic attack: (Gφ = Fθ)

DKL(Pi ||Pj) +DKL(Pj ||Pi ) ≤
(2α− 1)2

(1− α)
‖Fi −Fj‖2

TV ≤ 4
α4

1− α
‖F1−F2‖2

TV

KL-divergence → 0 as α→ 1
2
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Summary

Injection attacks against ML models

2 cases: blind learner, informed learner (attacker always blind)

2 attacks: uniform injection, mimic

Attacker maximizes lower bounds on minimax risk
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