Blind Attacks on Machine Learners

${\sf Alex \ Beatson^1 \quad Zhaoran \ Wang^1 \quad Han \ Liu^1}$

¹Princeton University

NIPS, 2016/ Presenter: Anant Kharkar

イロト イ理ト イヨト イヨト

1 Introduction

Motivation

2 Bounds

- Minimax
- Problem Scenarios

3 Results

- Informed Learner
- Blind Learner

4 Summary

- (A 🖓

Introduction Motivation

Bounds

Minimax

Problem Scenarios

B Results

- Informed Learner
- Blind Learner

Summary

- ∢ ศ⊒ ▶

- Context: data injection attack (adversarial data added to existing distribution)
- Past work assumes attacker has knowledge of learner's algorithm (or can query for it)
- Here, consider both informed and blind attacker
- Statistical privacy users may want to protect data via noise
- Objective: adversary makes it difficult to estimate distr. params

通 ト イヨ ト イヨト

Distribution of interest: $F_{\theta} \rightarrow \text{density } f_{\theta}$, family \mathcal{F} , data X_i Malicious distribution: $G_{\phi} \rightarrow \text{density } g_{\phi}$, family \mathcal{G} , data X'_i

Combined dataset: Z, distribution P

$$p(z) = \alpha f_{\theta}(z) + (1 - \alpha)g_{\phi}(z)$$

Introduction Motivation

2 Bounds

Minimax

Problem Scenarios

B Results

- Informed Learner
- Blind Learner

Summary

- ∢ 🗇 እ

Minimax risk - worst-case bound on population risk of estimator:

$$\mathcal{M}_{n} = \inf_{\hat{\psi}} \sup_{\psi \in \Psi} \mathbb{E}_{Z_{1:n} \sim P_{\psi}^{n}} L(\psi, \hat{\psi}_{n})$$

Intuitively: minimum worst-case risk = minimum worst-case expected $\ell 2\text{-norm}$

KL-Divergence - deviation between two distributions Mutual information I(Z, V) - measure of dependence between random variables

イロト イ理ト イヨト イヨト 三臣

Le Cam:

$$\mathcal{M}_{n} \geq L(\psi_{1},\psi_{2}) igg[rac{1}{2} - rac{1}{2\sqrt{2}} \sqrt{n \mathcal{D}_{\mathcal{KL}}(\mathcal{P}_{\phi_{1}},\mathcal{P}_{\phi_{2}})} igg]$$

Fano:

$$\mathcal{M}_n \geq \delta \left[1 - \frac{l(Z_{1:n}; V) + log2}{log|\mathcal{V}|} \right]$$

I(Z, V) upper-bounded by D_{KL}

<ロト </2011 (2011) (201

Introduction Motivation

2 Bounds

- Minimax
- Problem Scenarios

B Results

- Informed Learner
- Blind Learner

Summary

Image: Image:

Attacker knows \mathcal{F} but not F_{θ} , learner knows G_{ϕ} Objective: maximize \mathcal{M}_n by choice of G_{ϕ}

$$\phi^* = \operatorname{argmax}_{\phi} \mathcal{M}_{\mathsf{n}} = \operatorname{argmax}_{\phi} \inf_{\hat{\psi}} \sup_{\psi \in \Psi} \mathbb{E}_{Z_{1:n} \sim \mathcal{P}_{\psi}^{\mathsf{n}}} \mathsf{L}(\psi, \hat{\psi}_{\mathsf{n}})$$

Minimize KL-Divergence

$$\hat{\phi} = \operatorname{argmin}_{\phi} \sum_{\theta_i \in \mathcal{V}} \sum_{\theta_j \in \mathcal{V}} D_{\mathcal{KL}}(P_{\theta_i,\phi} || P_{\theta_j,\phi}) \geq \frac{|\mathcal{V}|^2}{n} I(Z^n;\theta)$$

Learner does not know G_{ϕ} , but knows \mathcal{G}

$$\mathcal{G}^{*} = \operatorname{argmaxinf}_{\hat{\theta}} \sup_{(F_{\theta}, G_{\phi}) \in \mathcal{F} \times \mathcal{G}} \mathbb{E}_{Z_{1:n}} L(\theta, \hat{\theta})$$
$$\hat{\mathcal{G}} = \operatorname{argmin}_{\mathcal{G}} \sum_{(\theta_{i}, \phi_{i}) \in \mathcal{V}} \sum_{(\theta_{j}, \phi_{j}) \in \mathcal{V}} D_{KL}(P_{\theta_{i}, \phi_{i}} || P_{\theta_{j}, \phi_{j}}) \geq \frac{|\mathcal{V}|^{2}}{n} I(Z^{n}; \theta)$$

. . . .

イロト イ理ト イヨト イヨト 二度

Introduction Motivation

2 Bounds

Minimax

Problem Scenarios

3 Results

Informed Learner

Blind Learner

Summary

- ∢ 🗇 እ

$$D_{\mathcal{KL}}(P_i||P_j) + D_{\mathcal{KL}}(P_j||P_i) \leq \frac{\alpha^2}{(1-\alpha)} \|F_i - F_j\|_{TV}^2 \operatorname{Vol}(\mathcal{Z})$$

Le Cam bound:

$$\mathcal{M}_n \geq L(\theta_1, \theta_2) \left(\frac{1}{2} - \frac{1}{2\sqrt{2}} \sqrt{\frac{\alpha^2}{(1-\alpha)} n \|F_1 - F_2\|_{TV}^2 \operatorname{Vol}(\mathcal{Z})} \right)$$

Fano bound:

$$\mathcal{M}_{n} \geq \delta \left(1 - \frac{\frac{\alpha^{2}}{(1-\alpha)} \textit{Vol}(\mathcal{Z}) \textit{n}\tau \delta + \textit{log2}}{\textit{log}|\mathcal{V}|} \right)$$

Uniform attack bounds effective sample size at $n \frac{\alpha^2}{(1-\alpha)} Vol(\mathcal{Z})$

▲口> ▲膠> ▲注> ▲注> 三張

Introduction Motivation

2 Bounds

Minimax

Problem Scenarios

3 Results

Informed Learner

Blind Learner

Summary

- ∢ ศ⊒ ▶

- A I I I A I I I I

For $\alpha \leq \frac{1}{2}$ - attacker can make learning impossible (KL-divergences sum to 0) Mimic attack: $(G_{\phi} = F_{\theta})$

$$D_{KL}(P_i||P_j) + D_{KL}(P_j||P_i) \le \frac{(2\alpha - 1)^2}{(1 - \alpha)} \|F_i - F_j\|_{TV}^2 \le 4 \frac{\alpha^4}{1 - \alpha} \|F_1 - F_2\|_{TV}^2$$

KL-divergence \rightarrow 0 as $\alpha \rightarrow \frac{1}{2}$

- Injection attacks against ML models
- 2 cases: blind learner, informed learner (attacker always blind)
- 2 attacks: uniform injection, mimic
- Attacker maximizes lower bounds on minimax risk

イロト 不得下 イヨト イヨト