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Introduction to Robust Estimation

Given that samples come from a nice distribution, but adversary has
corrupted a constant fraction of samples, goal is to robustly estimate
the statistics - mean and covariance

In one-dimension, robust alternatives to mean and covariance exist -
median and interquantile range

In high dimensions, there is a trade-off between robustness and
computational efficiency

Tukey median - hard to compute; heuristics based computation does
not scale with dimensions
Minimum volume ellipsoid - hard to compute; heuristics based
computation scale poorly with dimensions
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Related Work

Robust mean and covariance estimation - [DKK+16] gave an
algorithm for agnostically learning the parameters of a Gaussian
N (µ,Σ) that satisfy dTV (N ,N ′) ≤ O(ε) where ε samples are
corrupted, and the computational complexity of the algorithm is
polynomial in dimensionality d and 1/ε. [LRV16] proposed unknown
mean estimation where dTV (N ,N ′) ≤ O(ε

√
log d).

Robust PCA - [CLMW11] proposed robust PCA with semidefinite
programming which can tolerate a constant fraction of corruptions.
[XCS10] used semidefinite programming for robust PCA with outliers.
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Contributions

1 Modification to the algorithm of [DKK+16] with the definition of
good sets to estimate the mean with O(d/ε2) samples and covariance
with O(d2/ε2) samples.

2 Improvement to the number of corruptions that can be tolerated by
empirically tuning the threshold for filtering of corrupt points.

3 Same bounds are shown to be valid even for weaker distributional
assumptions of the underlying data.

4 Comparison of models via visual representation of genetic data that
encodes the map of Europe.
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Formal Framework

Notation: For a vector v , ‖v‖2 is the Euclidean norm, and for a matrix
M, ‖M‖2 is the spectral norm and ‖M‖F is the Frobenius norm. X ∈u S
means sample X is drawn from the empirical distribution defined by S .

Definition (ε-corruption)

Given ε > 0 and a distribution family D, the algorithm spcifies the number
of samples m and the adversary generates m samples X1,X2, . . . ,Xm from
some D ∈ D. It then draws m′ ∼ Bin(ε,m) from an appropriate
distribution and replaces m′ of the input samples with arbitrary points.
The altered samples are given to the algorithm.

Goal of the algorithm is to return the parameters of D̂ that are close to
true distribution D. For mean, Euclidean distance is used and for
covariance, Mahalanobis distance is used ‖Σ−1/2Σ̂Σ−1/2 − I‖F .
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Nearly Sample-Optimal Efficient Robust Learning

The overall filtering procedure for robust estimation is the following
iterative procedure:

1 find some univariate test (via spectral methods) that is violated by
the corrupted points

2 find some concrete tail bound violated by the corrupted set of points

3 thrown away all the points which violate this tail bound
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Robust Mean Estimation of Sub-Gaussian

Theorem (1)

Let G be a sub-gaussian distribution on Rd with parameter ν = Θ(1),
mean µG , covariance matrix I , and ε > 0. Let S be an ε-corrupted set of
samples from G of size Ω((d/ε2)poly log(d/ε)). There exists an efficient
algorithm that, on input S and ε > 0, returns a mean vector µ̂ so that
with probability at least 9/10 we have ‖µ̂− µG‖2 = O(ε

√
log 1/ε).
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Robust Mean Estimation under Bounded Second Moment

Theorem (2)

Let P be a distribution on Rd with unknown mean vector µP and unknown
covariance matrix ΣP ≤ σ2I . Let S be an ε-corrputed set of samples from
P of size Θ((d/ε) log d). There exists an efficient algorithm that, on input
S and ε > 0, with probability 9/10 outputs ‖µ̂− µP‖2 = O(

√
εσ).

The main difference between this theorem and the previous one is the
choice of filtering threshold. Instead of looking for a violation of a
concentration inequality, here threshold is chosen at random.
Caution: This method may throw away even some uncorrupted points but
it only rejects O(ε) samples with high probability.
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Robust Covariance Estimation of Gaussian

Theorem (3)

Let G ∼ N (0,Σ) be a Gaussian in d dimensions, and let ε > 0. Let S be
an ε-corrupted set of samples from G of size Ω((d2/ε2)poly log(d/ε)).
There exists an efficient algorithm that, given S and ε, returns the
parameters of a Gaussian distribution G ′ ∼ N (0,Σ) so that with
probability at least 9/10, it holds ‖I − Σ−1/2Σ̂Σ−1/2‖F = O(ε log(1/ε)).
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Robust Mean Estimation

Algorithms which achieve Theorems 1 and 2 have common template, with
three parameters:

Thresh(ε) - threshold function to terminate if covariance has spectral
norm bounded by Thresh(ε).

Tail(T , d , ε, δ, τ) - univariate tail bound violated by only τ fraction of
uncorrupted points, but more of corrupted points.

δ(ε, s) - slack function (required for technical reasons).
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Robust Mean Estimation Algorithm Template
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Algorithm for Sub-Gaussian (Theorem 1)
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Algorithm with Bounded Second Moment (Theorem 2)
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Robust Covariance Estimation (Theorem 3)
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Experimental Settings

Experiments were performed over:

Synthetic dataset unknown mean - ε = 0.1,
d = [100, 150, . . . , 400], n = 10d/ε2 samples are generated where
(1− ε) fraction come from N (µ, I )

Synthetic dataset unknown covariance - ε = 0.1,
d = [10, 20, . . . , 100], n = 0.5d/ε2 samples are generated where
(1− ε) fraction come from N (0,Σ)

Semi-synthetic dataset - Genotype of thousands of individuals.
PCA is used to project into two dimensions, which have a striking
resemblance to the map of Europe.
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Synthetic Data - Mean Estimation
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Synthetic Data - Covariance Estimation
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Semi-Synthetic Data
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Semi-Synthetic Data
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Semi-Synthetic Data
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Conclusion

Robust estimation of mean and covariance in high-dimensional data

Experiments over synthetic data comparing the statistical accuracy of
proposed method over existing approaches

Experiments over Genotype dataset to visually represent the
performance of various approaches in recovering the map of Europe

Theoretical proof of correctness of the proposed approach
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Roadmap of Proof of Theorem 1
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