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Introduction

@ Deep learning models are successfully used in many computer vision
and NLP tasks

@ These datasets may contain sensitive information about individuals
that can be revealed by the learned models

@ Private learning of deep learning models is hence required which does
not destroy the utility of the models

@ This work aims to achieve the best utility bound while guaranteeing a
strong notion of privacy called differential privacy
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Differential Privacy Background

Definition ((e, 0)-Differential Privacy)

A randomized mechanism M : D — R with domain D and range R
satisfies (e, d)-differential privacy if for any two adjacent inputs d,d’ € D
and for any subset of outputs S C R it holds that

Pr{M(d) € S] < ePr[M(d") € S] + 6

@ Gaussian noise mechanism is defined by
M(d) = Af(d) +N(0,S?.0°)

where S = |f(d) — f(d’)] is the sensitivity of f and N(0, S2.52) is
the Gaussian distribution with mean 0 and standard deviation Sro.
o Satisfies (e, d)-differential privacy if § > 7 exp(—(c€)?/2) and € < 1.
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Outline

e Proposed Approach
o Differentially Private SGD Algorithm
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Differentially Private SGD Algorithm

Algorithm 1 Differentially private SGD (Outline)

Input: Examples {z1,...,zn}, loss function L(§) =
+ >, L£(0,z;). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C.

Initialize 6y randomly
for t € [T] do
Take a random sample L; with sampling probability
L/N
Compute gradient
For each ¢ € Ly, compute g:(z;) + Vg, L(6:, )
Clip gradient
gi(z:) « g (z:)/ max (1, [8:Z0l2)
Add noise
g 1 (X, 8t(x:) + N(0,6°C?I))
Descent
Ori1 — 0 — Bt
Output §r and compute the overall privacy cost (g,4)
using a privacy accounting method.
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Differentially Private SGD Components

e Norm clipping - Gradient vector g is replaced by g/ max(1, ”gC”2) for
a clipping threshold C.

@ Lots - Group of examples batched together for noise addition.
Intuition - variance decreases as the group size increases. Size of a lot
is L.

@ Privacy accounting - Privacy loss is calculated at each step of the
algorithm and accumulate to bound the overall privacy loss of the
algorithm.

@ Moments accountant - Achieves a lower bound on the privacy
budget of the overall algorithm compared to the existing methods of
bounding the overall budget.
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e Proposed Approach

@ Moments Accountant
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Moments Accountant

e Each lot is (¢,0)-DP if 0 = y/2log %/e for Gaussian noise.
L .

@ Thus, each step is (O(qe), g6)-DP over the dataset, where g = § is
the sampling probability of a lot over the dataset.

@ Over T iterations, naive composition gives the bound of
(O(qTe),qT0o)-DP.

@ Over T iterations, strong composition gives the bound of
(O(qey/ T log %), qT6)-DP.

@ Over T iterations, moments accountant gives a tighter bound of

(O(qeV/T), 6)-DP.
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Moments Accountant

Theorem (1)

There exist constants ¢; and ¢ so that given the sampling probability
q = L/N and the number of steps T, for any € < c1q° T, algorithm is
(e, 0)-differentially private for any § > 0 if we choose

If we use the strong composition theorem, we will then need to choose

o = Q(qy/Tlog(1/3)log(T/)/e).

For L =0.01N, 0 =4, 6§ = 1072, and T = 10000, we have € =~ 1.26 using
the moments accountant, and € = 9.34 using the strong composition
theorem.

Martn Abadi, H. Brendan McMahan, Andy C  Deep Learning with Differential Privacy



Outline
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Moments Accountant Details

For neighboring databases d,d’ € D", a mechanism M, auxiliary input
aux, and an outcome o € R, privacy loss is defined at o as
PrM(aux, d) = o]
Pr[M(aux, d’') = o]

c(o; M, aux,d,d') = log

Moment Generating Function

For a given mechanism M, we define the A" moment a()\; aux, d, d’)
as the log of the moment generating function evaluated at the value \:

apm(Aiaux, d, d') = log Eopq(aux,d)[exp(Ac(0; M, aux, d, d'))]

Overall moment is given as:

am(N) = max am(X;aux, d, d)
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Moments Accountant Details

Theorem (2)

[Composability] Suppose that a mechanism M consists of a sequence of
adaptive mechanisms M, ..., My where M; : HJ’;} R;j xD — R;.
Then, for any \

k
am(A) < ZOAM,-(A)

[Tail bound] For any € > 0, the mechanism M is (e, §)-differentially
private for

§= m)jn exp(ap(N) — Xe)
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Deriving Moments bound for Gaussian

Let po denote the pdf of N(0,02), and py denote the pdf of (1, 02).
Let 1 be the mixture of two Gaussians = (1 — q)po + qui. Then
a(\) = log max(Eq, E;) where

E1 = Eznpol(10(2)/14(2))]

Ex = Ezu[(1(2)/10(2))]

In implementation, a(\) is computed via numerical integration.
In addition, the asymptotic bound is given as:

a(X) < @AA+1)/(1 - q)o® + 0(¢*/5)

Together with this bound and Theorem 2, we get the proof of Theorem 1.
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Implementation

e DPSGD! consists of: Sanitizer and Privacy Accountant.

@ Sanitizer performs two operations: (1) limit the sensitivity of each
individual example by clipping the norm of its gradient; and (2) add
noise to the gradient of a batch before updating the network
parameters.

@ Privacy Accountant keeps track of privacy spending over the
course of training.

o Differentially Private PCA: Gaussian noise is added to normalized
covariance matrix and then the principal components are obtained.

@ Convolutional Layers: Learned on public data, and based on
GooglLeNet or AlexNet features for image models.

"https://github.com/tensorflow/models/
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Experimental Results

Experiments done on:

o MNIST : 60,000 train and 10,000 test
e CIFAR-10 : 50,000 train and 10,000 test

@ Model uses a 60-dimensional PCA projection layer and a single hidden
layer with 1,000 RelLu hidden units.

Parameters are set as g = 0.01, 0 = 4, and § = 1072, L = 600.

@ The learning rate is set at 0.1 initially and linearly decreased to 0.052
over 10 epochs and fixed thereafter.
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Applying Moments Accountant
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Figure 2: The ¢ value as a function of epoch FE for
g=0.01,0 =4, =107°, using the strong composition
theorem and the moments accountant respectively.
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MNIST Results
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Figure 3: Results on the accuracy for different noise levels on the MNIST dataset. In all the experiments, the
network uses 60 dimension PCA projection, 1,000 hidden units, and is trained using lot size 600 and clipping
threshold 4. The noise levels (0, 0,) for training the neural network and for PCA projection are set at (8, 16),
(4, 7), and (2, 4), respectively, for the three experiments.
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MNIST Results
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Figure 4: Accuracy of various (g,4) privacy values
on the MNIST dataset. Each curve corresponds to
a different § value.
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MNIST Results
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Figure 5: MNIST accuracy when one parameter varies, and the others are fixed at reference values.

Martn Abadi, H. Brendan McMahan, Andy C  Deep Learning with D



CIFAR-10 Results
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Figure 6: Results on accuracy for different noise levels on CIFAR-10. With 4 set to 10~°, we achieve accuracy
67%, 70%, and 73%, with ¢ being 2, 4, and 8, respectively. The first graph uses a lot size of 2,000, (2) and (3)
use a lot size of 4,000. In all cases, ¢ is set to 6, and clipping is set to 3.
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Related Works

@ Convex optimization methods have been extensively used for
differentially private learning. For example, Wu et al.? achieve 83%
accuracy on MNIST via private convex ERM.

@ Shokri and Shmatikov® designed and evaluated a system for
distributed training of a deep neural network, where privacy budget is
per model parameter, which is several thousand times more.

o Differentially private deep learning by Phan et al.* focuses on learning
autoencoders, where privacy is based on perturbing the objective
function.

2X. Wu, A. Kumar, K. Chaudhuri, S. Jha, and J. F. Naughton. Differentially private
stochastic gradient descent for in-RDBMS analytics. CoRR, abs/1606.04722, 2016.

3R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In CCS. ACM, 2015.

*N. Phan, Y. Wang, X. Wu, and D. Dou. Differential privacy preservation for deep
auto-encoders: an application of human behavior prediction. In AAAI, 2016.
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Conclusion

@ Model achieves 97% training accuracy for MNIST and 73% accuracy
for CIFAR-10, both with (8,1075)-differential privacy

o Differentially private SGD algorithm proposed and implemented in
TensorFlow

@ Moments accountant proposed for tighter bounds on privacy loss
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