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Need for Data Privacy

Centralized collection of photos, speech and video by companies from
users has many privacy risks:

@ Companies keep the data forever; users have no control over it.

@ Images and voice recordings may contain sensitive items - faces,
license plates, computer screens, etc.

© Users data is subject to subpoenas and warrants, as well as
warrantless spying by national-security and intelligence outfits.
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Multi-Party Private Learning

@ Sharing of data about individuals is not permitted by law or
regulation in medical domain.
@ Biomedical and clinical researchers are thus restricted to perform
learning on the datasets belonging to their own institutions.
e Data might be homogeneous, leading to biased local model

@ This restricts the performance of deep learning models which rely on
large scale data.
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Related Work

Existing private machine learning algorithms aim to achieve:

@ Privacy of data or input to the model - Schemes based on Secure
Multi-party Computation (SMC) to protect the intermediate
computations. Used for decision trees, Naive Bayes models, k-means
clustering, etc.

@ Privacy of model parameters - One party holds the private model and
the other party holds the data. Cryptographic techniques are applied
for secure evaluation of the private model on the data.

© Privacy of the model’s output - Differential Privacy has been applied
for private machine learning of SVM, logistic and linear regression,
etc.
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Key ldea - Distributed Selective SGD

Distributed Selective SGD (DSSGD) has the following assumptions:

@ Updates to different parameters during gradient descent are
inherently independent

@ Different training datasets contribute to different parameters

© Different features do not contribute equally to the objective function

The overall procedure of DSSGD is given as:

@ Each party downloads a subset of global model parameters from the
server and updates its local model

@ Updated local model is trained on the private data

© Subset of gradients are uploaded back to server which updates the
global model
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System Architecture
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Local Training

Choose initial parameters w{?) and Iearning rate .

Repeat until an approximate minimum is obtained:

1. Download 64 x |w(?)| parameters from server and replace the
corresponding local parameters.

2. Run SGD on the local dataset and update the local parameters
w® according to (1). w; = w; — adE; /0w,

3. Compute gradient vector Aw(*) which is the vector of
changes in all local parameters due to SGD.

4. Upload Awg) to the parameter server, where S is the set
of indices of at most 6, X |w{?| gradients that are selected
according to one of the following criteria:

o largest values: Sort gradients in Aw () and upload &,
fraction of them, starting from the biggest.

e random with threshold: Randomly subsample the gra-
dients whose value is above threshold 7.

The selection criterion is fixed for the entire training,
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Parameter Server

Choose initial global parameters w(9!obal),
Set vector stat to all zero.

EVENT: A participant uploads gradients Awg.
e Forallj € S: -
~ Set wlglobal) = wlglobal) 4 Aw;
— Setstat; := stat; + 1
EVENT: A participant downloads @ parameters.

e Sort stat, and let Iy be the set of indices for stat elements
with largest values.

(global)
I

e Send w . to the participant.
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Experimental Setup

@ Evaluation on two benchmark datasets:
o MNIST handwritten digit recognition - 60,000 train and 10,000 test
o Google's Street View House Numbers (SVHN) - 100,000 train and
10,000 test
Datasets are normalized by subtracting the average and dividing by
the standard deviation of data samples in their training sets.

@ Network architectures:

o MLP - 140,106 for MNIST and 402,250 for SVHN
o CNN - 105,506 for MNIST and 313,546 for SVHN

Number of participants N € {30, 90, 150}
Fraction of parameters selected for sharing 64 € {1,0.1,0.01,0.001}

e Gradient upload criteria: a) largest value b) random with thresholding
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Overall Accuracy of DSSGD with Varying 64

SGD 0.1 0.01 0.001 Standalone
MNIST, CNN | 09917 0.9914 09871 0.9645 | 0.9316
SVHN,CNN | 09299 09312 0.8986 0.7481 | 0.8182

SGD 0.1 0.01 0.001 Standalone
MNIST, MLP | 0.9810 0.98 09707 0.9171 | 0.8832
SVHN,MLP | 0.8476 0.8394 0.7833 0.6542 | 0.5136
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Accuracy of DSSGD on MNIST Dataset
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Accuracy of DSSGD on SVHN Dataset
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Accuracy of DSSGD for Different Gradient Selection

MNIST, CNN, M=1, Round Robin, 6,=1 MNIST, GNN, M=1, Round Robin, fi=1,
gradient selection: largest values gradient seleclion: random with threshold
¥=0.001, v=0.0001
1 1
0.98 - g |
0.98
097
g‘ 0.98 g‘
5 095 3
8 0844 g
093
082
081 .
0.9 -
0.001 0.01 01 1 0.
Parameter selection rate for upload (6,) r selection rate for upload (6,)
SVHN, CNN, M=1, Round Robin, 8,=1 SVHN, CNN, M=1, Round Robin, B,=1,
gradient selection: largest valuas gradignt selection: random with threshold
¥=0.001, 7=0.0001
0.94 0.94
082 0.82
5 08 L. 09
E 0.88 % 0.88
g oss Tl & o086
N=150 - 4
0.84 N30 = 0.84
0.82 N=30 = |3 082 o N=50
Standalong --w- - Fo N=30 -«
08 08 -
0.001 0.01 01 1 0.001 0. o1 1
Parametar selectioin rate for upload (8 ) Paramefer selection rate for upload (8}

eza Shokri, Vitaly Shmatikov (The Universit Privacy-Preserving Deep Learni



Privacy Discussion

@ Preventing direct leakage
e while training the model - participants do not reveal their data to other
parties during training
e while using the model - participants can use the learned model locally
without any communication with other parties
@ Preventing indirect leakage with Differential Privacy - noise is added
to gradients to prevent leakage of information related to local dataset
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Differential Privacy

For any two datasets D and D’ differing in a single item and any output O
of function f, the function is differentially private if:

Pr{f(D) € O} < exp(¢).Pr{f(D’) € O}

@ In short, a computation is differentially private if the probability of
producing a given output does not depend very much on whether a
particular data point is included in the dataset.

o Differential privacy can be guaranteed by adding Laplace noise to the
output of f proportional to its sensitivity.

The (global) sensitivity of f is:

_ _ /
of = gégfllf(D) f(D)|l
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Differential Privacy in DSSGD

@ Here, f computes gradients and selects which of them to share with
other participants.

@ There are two sources of potential leakage: how gradients are selected
for sharing and the actual values of the shared gradients.

@ Sparse vector technique is used to (i) randomly select a small subset
of gradients whose values are above a threshold, and to (ii) share
perturbed values of the selected gradients, all under a consistent
differentially private mechanism.
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Differentially Private DSSGD

e Let € be the total privacy budget for one epoch of participant
4 running DSSGD, and let A f be the sensitivity of each gra-
dient

Let ¢ = £, |Aw| be the maximum number of gradients that
can be uploaded in one epoch

e Lete; = %e, €2 = %e
e Leto(x) = %

. Generate fresh random noise 7., ~ Lap(o(e1))
(i)

i

—

. Randomly select a gradient Aw
. Generate fresh random noise 7., ~ Lap(20(e1))

. If abs(bound(Aw_Ei), ¥)) + rw > 7 + 7rr, then

& W N

(2) Generate fresh random noise 7, ~ Lap(o(e2))
(b) Upload bound (Aw}t) +rl,,7) to the parameter server
(c) Charge £ to the privacy budget

(d) If number of uploaded gradients is equal to ¢, then Halt
Else Goto Step 1

th

. Else Goto Step 2

Reza Shokri, Vitaly Shmatikov (The Universit Privacy-Preserving Deep Learning



Accuracy of Differentially Private DSSGD
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Conclusion

@ New distributed training technique is proposed, based on selective
stochastic gradient descent.

@ Works for any type of neural network and preserves privacy of
participants training data without sacrificing the accuracy of the
resulting models.
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