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Motivation

Interpretabilty of neural networks :Assign importance score to
inputs for a given output.

Importance is defined in terms of differences from a ‘reference’ state.

Propagates importance signal even when gradient is zero.

Gives separate consideration to positive and negative contributions.
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Interpretation of Neural Networks
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State-of-the-art

Perturbation-based forward propagation approaches: Zeiler and
Fergus (2013), Zhou and Troyanskaya (2015).

Backpropagation-based approaches: Saliency maps: Simonyan et
al. (2013), Guided Backpropagation: Springenberg et al. (2014)
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Saturation problem
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Saturation problem
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Thresholding Problem

y = max(0, x − 10)
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Philosophy

Explains difference in output from some ‘reference’ output in terms of
difference on input from some ‘reference’ input.

Summation-to-delta property:

Σn
i=1C∆xi∆t = ∆t (1)

Blame ∆t on ∆x1,∆x2, . . .

C∆xi∆t can be non-zero even when δt
δxi

is zero.
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Defining Reference

Given neuron x with inputs i1, i2, . . . such that x = f (i1, i2, . . . )

Given reference activations i01 , i
0
2 , . . . of the input:

x0 = f (i01 , i
0
2 , . . . ) (2)

Choose reference input and propagate activations though the net.

Good reference will rely on domain knowledge: “What am I interested
in measuring difference against?”
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Saturation Problem
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Thresholding Problem
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Multipliers

m∆x∆t =
C∆x∆t

∆t
(3)

Multiplier is the contribution of ∆x to ∆t divided by ∆x

Compare: partial derivative = δt
δx

Infinitesimal contribution of δx to δt, divided by δx
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Chain Rule

m∆xi∆z = Σjm∆xi∆yjm∆yj∆z (4)

Can be computed efficiently via backpropagation
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Separating positive and negative contribution

In some cases, important to treat positive and negative contributions
differently.

Introduce ∆x+
i and ∆x−i , such that:

∆xi = ∆x+
i + ∆x−i ;C∆xi∆t = C∆x+

i ∆t + C∆x−i ∆t

Avanti Shrikumar, Peyton Greenside, Anshul Kundaje (Stanford University)Learning Important Features Through Propagating Activation Differences
ICML, 2017 Presenter: Ritambhara Singh 24

/ 39



Outline

1 Introduction
Motivation
Background
State-of-the-art
Drawbacks

2 Proposed Approach
DeepLIFT Method
Defining Reference
Solution
Multipliers and Chain Rule
Separating positive and negative contribution
Rules for assigning contributions

3 Results
MNIST digit classification
DNA sequence classification

Avanti Shrikumar, Peyton Greenside, Anshul Kundaje (Stanford University)Learning Important Features Through Propagating Activation Differences
ICML, 2017 Presenter: Ritambhara Singh 25

/ 39



Linear Rule
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Rescale Rule
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Where it works
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Where it fails: “min” (AND) relation
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Where it fails: “min” (AND) relation
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RevealCancel Rule
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Solution: “min” (AND) relation
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MNIST digit classification
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DNA sequence classification
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DNA sequence classification
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Summary

Novel approach for computing importance scores based on differences
from the ‘reference’.

Using difference-from-reference allows information to propagate even
when the gradient is zero

Separates contributions from positive and negative terms

Video at : https://www.youtube.com/watch?v=v8cxYjNZAXc&

index=1&list=PLJLjQOkqSRTP3cLB2cOOi_bQFw6KPGKML

Slides at: https://drive.google.com/file/d/0B15F_

QN41VQXbkVkcTVQYTVQNVE/view

Future Direction

Applying DeepLIFT to RNNs
Compute ‘reference’ empirically from data
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