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Structured Prediction

@ Many problems in real-world applications involve predicting a
collection of random variables that are statistically related

@ Graphical models have been widely exploited to encode these
interactions, but they are shallow and only a log linear combination of
hand-crafted— features is learned
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Structured Prediction

@ Deep structured models attempt to learn complex features by taking
into account the dependencies between the output variables. A
variety of methods have been developed in the context of predicting
discrete outputs

@ However, little to no attention has been given to deep structured
models with continuous valued output variables.

o One of the main reasons is that inference is much less well studied, and
very few solutions exist
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Continuous-Valued Structured Prediction

@ Given input x € X, let y = (y1, ..., yn) be the set of random variables
we want to predict. The output space is a product space of all the

elements y € Y = H,N:1 Vi, VicR
e E(x,y;w) is an energy function which encodes the problem:

E(x,y;w Zf Vi, X; Wu)—i—Zf Yooy Xy Wey) (1)

where fi(y; : x,wy) : Vi x X — R is a function that depends on a
single variable (i.e. unary term) and 7, (y;) : Vo X X — R depends on
a subset of variables y, = (y;)ica defined on a domain Y, C Y
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Continuous-Valued Structured Prediction
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Continuous-Valued Structured Prediction

@ Given an input x, inference aims at finding the best configuration by
minimizing the energy function:

y* = argminycy Z fo(yis x, wy) + Z fo (Yo, X, Wer) (2)

o Finding the best scoring configuration y* is equivalent to maximizing
the posteriori distribution:

plylxi ) = 5ro—sexn(—E(x.ylw)) )
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Inference in Deep Structured Prediction

@ Performing inference in MRFs with continuous variables involves
solving a challenging numerical optimization problem

@ If certain conditions are satisfied, inference is often tackled by a group
of algorithms called proximal methods

@ In this paper, they use proximal methods and show that it results in a
particular type of recurrent net
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Proximal Methods

The proximal operator proxs(xp): R — R of a function is defined as:
proxg(xo) = argminy(y — x0)* + f(y) (4)

This involves solving a convex optimization problem, but usually there is a
closed-form solution.
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Proximal Deep Structured Models

In order to apply proximal algorithms to tackle the inference problem
defined in Eq. (2), we require the energy functions f; and f, to satisfy the
following conditions:

© There exist functions h; and g; s.t. fi(y;, x; w) = gi(yi, hi(x, w)),
where g; is a distance function

@ There exists a closed-form proximal operator for g;(yi, hi(x, w)) wrt y;

© There exist functions h, and g, s.t. fo(Ya, x; w) can be re-written as
fo (Yo, X; w) = ha(x; W)ga(WoTya)
© There exists a proximal operator for g, ()

Shenlong Wang, Sanja Fidler, & Raquel Urtas Proximal Deep Structured Models



Proximal Deep Structured Models

If our potential functions satisfy the conditions above, we can rewrite our
objective function as follows

E(x,y;w) Zg, Yi» hi(x; w) +Zh xiw)ga(wd ya)  (5)

Shenlong Wang, Sanja Fidler, & Raquel Urtas Proximal Deep Structured Models



Primal Dual Solvers

The general idea of primal dual solvers is to introduce auxiliary variables z
to decompose the high order terms. We can then minimize z and y
alternately through computing their proximal operator:

min, cymax; cz Zg,-(y;, hi(x; w))

; (6)
— Z ha(X, W)g;(Woz—)/a) + Z ha(xa W)<Wo—zry047 Za>

where g is the convex conjugate of g*
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Solving Deep Structured Models

The primal-dual method solves the problem in Eq.(6) by iterating the
following steps: (i) fix y and minimize the energy wrt z; (ii) fix z and
minimize the energy wrt y; (iii) conduct a Nesterov extrapolation gradient
step:

de+1) _ (za +|h (xw)‘wgy((lt))

t+1 *

yz( ) = PTOXg,-,h-(xw)(yl |—h (W) TZ(HI)D
B = T ey )

where y(t) is the solution at the t-th iteration, z(t) is an auxiliary variable
and h(x, w,) is the deep unary network

Shenlong Wang, Sanja Fidler, & Raquel Urtas Proximal Deep Structured Models



Solving Deep Structured Models
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Given training pairs composed of inputs {X,,},’}’:1 and their corresponding
output {yﬁt nNzl' learning aims at finding parameters which minimizes a

regularized loss function:
w* = argminy, Y vy, y&) +7|lwll2 (7)
n

Where £() is the loss, y* is the minimizer of RNN, and - is a scalar.
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Algorithm for Learning

Algorithm: Learning Continuous-Valued Deep Structured Models
Repeat until stopping criteria

1. Forward pass to compute f;(x, w) and s (x, W)
2. Compute y* i via forward pass in Eq. (5)
3. Compute the gradient via backward pass

4. Parameter update

Figure 2: Algorithm for learning proximal deep structured models.
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Image Denoising

Corrupt each image with Gaussian noise and use the following energy
function to denoise:

i (07

where proxp(y, ) = Xf_f:\y and prox;(z) = min(|z|,1) - sign(z)
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Image Denoising

| [BM3D [6] EPLL[40] LSSC[22] CSF[30] RTF[29] Ours Ours GPU |

PSNR 28.56 28.68 28.70 28.72 2875  28.79 28.79
Time (second) 2.57 108.72 516.48 5.10 69.25 0.23 0.011

Table 1: Natural Image Denoising on BSDS dataset [23] with noise variance o = 25.
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Depth Refinement

LMS BM3D[6] FilterForest [10] Ours |
36.31 |

\ | Wiener Bilateral
[ PSNR | 32.29 3095 2437 35.46 35.63
Table 3: Performance of depth refinement on dataset [10]

o= Ty i‘" F*Hw T
=/ =) V"= V- ‘Ex =)

Figure 4 Qualitative results for depth refinement. Left to right: mput ground -truth, wiener filter,
bilateral filter, BM3D, Filter Forest, Ours.
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Optical Flow

Predict the motion between two image frames for each pixel

y* = argminyey Y _|lyi — i<, x" w14 D Alwlooyalli  (9)
i @

1
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Optical Flow

\ | Flownet Flownet + TV-I1  Our proposed |
[ End-point-error | 4.98 4.96 4.91 |

Table 4: Performance of optical flow on Flying chairs dataset [11]
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