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Structured Prediction

Many problems in real-world applications involve predicting a
collection of random variables that are statistically related

Graphical models have been widely exploited to encode these
interactions, but they are shallow and only a log linear combination of
hand-crafted– features is learned
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Structured Prediction

Deep structured models attempt to learn complex features by taking
into account the dependencies between the output variables. A
variety of methods have been developed in the context of predicting
discrete outputs

However, little to no attention has been given to deep structured
models with continuous valued output variables.

One of the main reasons is that inference is much less well studied, and
very few solutions exist
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Continuous-Valued Structured Prediction

Given input x ∈ X , let y = (y1, ..., yn) be the set of random variables
we want to predict. The output space is a product space of all the
elements y ∈ Y =

∏N
i=1 Yi , Yi ⊂ R

E (x , y ;w) is an energy function which encodes the problem:

E (x , y ;w) =
∑
i

fi (yi , x ;wu) +
∑
α

fα(yα, x ,wα) (1)

where fi (yi : x ,wu) : Yi ×X → R is a function that depends on a
single variable (i.e. unary term) and fα(yi ) : Yα ×X → R depends on
a subset of variables yα = (yi )i∈α defined on a domain Yα ⊂ Y
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Continuous-Valued Structured Prediction
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Continuous-Valued Structured Prediction

Given an input x , inference aims at finding the best configuration by
minimizing the energy function:

y∗ = argminy∈Y
∑
i

fα(yi ; x ,wu) +
∑
α

fα(yα, x ,wα) (2)

Finding the best scoring configuration y∗ is equivalent to maximizing
the posteriori distribution:

p(y |x ;w) =
1

Z (x ;w)
exp(−E (x , y |w)) (3)
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Inference in Deep Structured Prediction

Performing inference in MRFs with continuous variables involves
solving a challenging numerical optimization problem

If certain conditions are satisfied, inference is often tackled by a group
of algorithms called proximal methods

In this paper, they use proximal methods and show that it results in a
particular type of recurrent net
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Proximal Methods

The proximal operator proxf (x0): R→ R of a function is defined as:

proxf (x0) = argminy (y − x0)2 + f (y) (4)

This involves solving a convex optimization problem, but usually there is a
closed-form solution.
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Proximal Deep Structured Models

In order to apply proximal algorithms to tackle the inference problem
defined in Eq. (2), we require the energy functions fi and fα to satisfy the
following conditions:

1 There exist functions hi and gi s.t. fi (yi , x ;w) = gi (yi , hi (x ,w)),
where gi is a distance function

2 There exists a closed-form proximal operator for gi (yi , hi (x ,w)) wrt yi
3 There exist functions hα and gα s.t. fα(yα, x ;w) can be re-written as

fα(yα, x ;w) = hα(x ;w)gα(wT
α yα)

4 There exists a proximal operator for gα()
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Proximal Deep Structured Models

If our potential functions satisfy the conditions above, we can rewrite our
objective function as follows

E (x , y ;w) =
∑
i

gi (yi , hi (x ;w)) +
∑
α

hα(x ;w)gα(wT
α yα) (5)

Shenlong Wang, Sanja Fidler, & Raquel Urtasun Proximal Deep Structured Models
NIPS 2016 Presenter: Jack Lanchantin 13

/ 26



Primal Dual Solvers

The general idea of primal dual solvers is to introduce auxiliary variables z
to decompose the high order terms. We can then minimize z and y
alternately through computing their proximal operator:

(6)

miny ∈Ymaxz ∈Z
∑
i

gi (yi , hi (x ;w))

−
∑
α

hα(x ,w)g∗α(wT
α yα) +

∑
α

hα(x ,w)〈wT
α yα, zα〉

where g∗α is the convex conjugate of g∗
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Solving Deep Structured Models

The primal-dual method solves the problem in Eq.(6) by iterating the
following steps: (i) fix y and minimize the energy wrt z; (ii) fix z and
minimize the energy wrt y; (iii) conduct a Nesterov extrapolation gradient
step:

where y (t) is the solution at the t-th iteration, z(t) is an auxiliary variable
and h(x ,wu) is the deep unary network
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Solving Deep Structured Models
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Learning

Given training pairs composed of inputs {xn}Nn=1 and their corresponding
output {ygtn }Nn=1, learning aims at finding parameters which minimizes a
regularized loss function:

w∗ = argminw
∑
n

`(y∗n , y
gt
n ) + γ||w ||2 (7)

Where `() is the loss, y∗ is the minimizer of RNN, and γ is a scalar.
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Algorithm for Learning
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Image Denoising

Corrupt each image with Gaussian noise and use the following energy
function to denoise:

y∗ = argminy∈Y
∑
i

||yi − xi ||22+
∑
α

λ||wT
ho,αyα||1 (8)

where prox`2(y , λ) = x+λy
1+λ and prox∗ρ (z) = min(|z |, 1) · sign(z)
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Image Denoising
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Depth Refinement
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Optical Flow

Predict the motion between two image frames for each pixel

y∗ = argminy∈Y
∑
i

||yi − fi (x
l , x r ,wu)||1+

∑
α

λ||wT
ho,αyα||1 (9)
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Optical Flow
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