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Introduction

Reduces number of parameters and effectively structured for
parallelization

Observes classes do not share same features

Learns to split a network into a set or a hierarchy of multiple groups
that use disjoint sets of features

Learns class-to-group and feature-to-group assignment matrices
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Contributions

Tree of disjoint subnetworks with reduced number of parameters

Algorithm for training the network which learns assignment matrices
and the weights

Model-parallelizable with more processors
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Concept
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Related Works

Parameter reduction for deep neural networks - l1-norm, l2,1-norm
assumes classes share the same set of features

Parallel and distributed deep learning - data parallelism and model
parallelism
assumes model structure is given and fixed

Tree-structured deep networks - hierarchical class structures
improves model accuracy but increased computational complexity
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Network Parameters

Given a dataset D = {xi , yi}Ni=1 where xi ∈ Rd is an input and
yi ∈ {1, . . . ,K} is a label for K classes

Goal is to learn weights at each layer l is a block-diagonal matrix W(l)

Each block W
(l)
g is associated with a class group g ∈ G where G is

the set of all groups

Juyong Kim, Yookoon Park, Gunhee Kim, Sung Ju HwangSplitNet: Learning to Semantically Split Deep Networks for Parameter Reduction and Model ParallelizationPMLR 70, 2017 10 / 40



Group Assignment Vectors

Number of groups G is given. Z2 = {0, 1}
pgi binary variable whether feature i is assigned to group g

qgj binary variable indicates whether class j is assigned to group g

pg ∈ ZD
2 feature group assignment vector for group g . D is

dimension of features

qg ∈ ZK
2 class group assignment vector for group g . K is number of

classes

pg and qg define group g
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Restrictions

No overlaps between groups in features or classes∑
g pg = 1D and

∑
g qg = 1K

Allows weight matrix W ∈ RDxL to be sorted into a block-diagonal
matrix. Fewer parameters and faster multiplication.
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Objective

min
ω,P,Q

L(ω,X, y) +
L∑

l=1

λ||W(l)||22 +
L∑

l=S

Ω(W(l),P(l),Q(l)) (1)

L(ω,X, y) is cross entropy loss on training data

ω = {W(1), . . . ,W(L)} is the set of network weights at all layers

||W(l)||22 is the weight decay regularizer with hyperparameter λ

S is the layer where splitting starts

Ω(W(l),P(l),Q(l)) is the regularizer for splitting the network

P(l),Q(l) are the set of feature-to-group and class-to-group
assignment vectors respectively for each layer l
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Objective

Jointly optimized using stochastic gradient descent

Obtains grouping and prunes out inter-group connections

Once grouping is learned, the weight matrix can be split into
block-diagonal matrices
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Three Objectives

Ω(W,P,Q) = γ1Rw (W,P,Q) + γ2RD(P,Q) + γ3RE (P,Q) (2)

All are regularizations
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Group Weight Regularization

pgi = eαgi/
∑
g

eαgi , qgj = eβgi/
∑
g

eβgi (3)

Reparameterize with unconstrained variables αgi and βgj in the
softmax form

Empirically observed this form results in more semantically meaningful
groupings.
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Group Weight Regularization

Rw (W,P,Q) =
∑
g

∑
i

||((I−Pg )WQg )i∗||2+
∑
g

∑
j

||(PgW(I−Qg ))∗j ||2

(4)

Pg = diag(pg ) and Qg = diag(qg ) are the feature and class group
assignments for group g

(M)i and (M)j denote i-th row and j-th column of matrix M

Row/column-wise l2,1-norm

PgWQg represents the weights for group g

Prune out inter-group connections to obtain block-diagonal matrices
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Group Weight Regularizatio
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Disjoint Group Assignment

RD(P,Q) =
∑
i<j

pi · pj +
∑
i<j

qi · qj (5)

To make the group assignment vectors to be completely mutually
exclusive

Orthogonal so their products equal to 0
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Balanced Group Assignment

RE (P,Q) =
∑
g

((
∑
i

pgi )
2 + (

∑
j

qgi )
2) (6)

Balance the group assignments

Minimized when each group has equal number of elements
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Purpose

Split the input and hidden layers

Multiple consecutive layers or recursive hierarchical group assignments
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Algorithm
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Deep Split

Lower layers learn generic representations

Higher layers learn features more specific to the classes

Only need to split the layers down to the S-th layer
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Deep Split

The output nodes of each layer corresponds to the input nodes of the
next layer

q
(l)
g = p

(l+1)
g

Signal is not passed across different groups of layers

Allows parallization

Same objective function
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Hierarchical Grouping

Multi-level hierarchy of categories

p
(l+1)
g =

∑
s p

(l+1)
gs

s subgroups
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Parallelization

Two approaches

Assigning both the lower-layers and group-specific upper layers to
each node
Redundant computation

Assigning the lower layer to a separate processor
Communication overhead
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Datasets and Baselines

Datasets: CIFAR-100 (45000 images and 100 classes) and
ImageNet-1K (1.2M images and 1000 classes)

Base Network: Wide Residual Network (WRN), AlexNet, and
ResNet-18

Testing Networks: SplitNet-Semantic (semantic taxonomy),
SplitNet-Clustering (spectral clustering), SplitNet-Random, SplitNet
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Parameter Reduction and Accuracies
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Parameter Reduction and Accuracies
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Test-time Model Parallelization
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Qualitative Analysis
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Qualitative Analysis
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Summary

Reduced number of parameters and make parallelization easier

Algorithm that created block-diagonal matrices

Allows weights and splitting to be trained at the same time

For future work, plan to find way to efficiently train on multi-GPU or
multiprocessor environments from the initial training stage
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