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Hypothesis Testing

In QA, a hypothesis is formed by regressing the original query, and
then the hypothesis is tested against reality (support set)

If the model is satisfied with the current hypothesis, the reasoning
process is stopped and the answer is found. Else, reformulate
hypothesis until the answer is found.

Tsendsuren Munkhdalai & Hong Yu Reasoning with Memory Augmented Neural Networks for Language Comprehension, ICLR17
ICLR 2017 Presenter: Jack Lanchantin 3

/ 22



Cloze-Type QA
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Previous Work

Many similar models for this task: Attentive Reader (Hermann et. al.
2015, Memory Networks (Sukhbaatar et. al. 2015), EpiReader
(Trischler et al 2016)

Previous models designed with the predefined number of
computational hops for inference, but different types of questions
require different types of reasoning
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Memory Initialization

Query Memory: Mq
0 = BiLSTMq(Q) ∈ Rk×|Q| (1)

Document Memory: Md = BiLSTMd(D) ∈ Rk×|D| (2)
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Updating Memory through Hypothesis-Test Loop

Hypothesis Formulation: In each step, the query memory Mq is
updated with content from the document memory to form a new
query

Hypothesis Testing: The new query is then checked against the
document facts to make an answer prediction

3 Steps:
1 Read
2 Compose
3 Write
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1. Read

Given Query state sqt ∈ Rk , and Document state sdt ∈ Rk :

Read vector (k): rt = LSTM r ([sqt−1; sdt−1]) (3)

Q Alignment (|Q|): lqt = rTt Mq
t−1 (4)

New Q State (k): sqt = softmax(lqt )TMq
t−1 (5)

Q Memory Key (|Q|): zqt = sigmoid(lqt ) (6)

D Alignment (|D|): ldt = sqt TM
d (7)

New D State (k): sdt = softmax(ldt )TMd (8)
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2. Compose

Combines the current query state sqt , document state sdt , and hidden state
of read module rt , resulting in single vector ct

ct ∈ Rk = MLPc(sqt , s
d
t , rt) (9)
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3. Write

Takes outputs zqt (Q Memory Key), and sdt (Document State) from the
read module and updates the query memory:

Mq
t = Mq

t−1z
q
t + sdt (1− zqt ) (10)
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Ending The Hypothesis-Test Loop

Need to decide when to stop the read-compose-write loop and answer

2 strategies are explored:
1 Query-Gating
2 Adaptive Computation
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Query Gating

Instead of making a hard decision on halting the loop (i.e. stop reading),
the write module performs a word-level query gating as:

Write vector (k): wt = LSTMw (ct) (11)

Write gate (k): gq
t = sigmoid(wT

t Mq
t−1) (12)

New Query Memory (k × |Q|): Mq
t = Mq

t (1− gq
t ) + Mq

t−1g
q
t (13)
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Adaptive Computation

Write module is equipped with a termination, which decides its willingness
to continue or finish in each step:

Write vector (k): wt = LSTMw (ct) (14)

Termination Score (scalar): et = sigmoid(oTwt) (15)

End probability: pt = et

t−1∏
i=1

(1− ei ), pT = 1−
T−1∑
i=1

pi (16)
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Answer Prediction

Pt(a|Q,D) = vT softmax(ldt ) (17)

where v ∈ R|D| is a mask denoting the positions of the answer token a in
the document (ones for the token and zeros otherwise). ldt is the
query-document alignment score
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Children’s Book Test (CBT)

20 consecutive sentences from a childrens story
21st sentence in which a word has been deleted
list of ten choices for the deleted word
tests story completion rather than reading comprehension
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Childrens Book Test (CBT) Results

CBT-NE: Named Entities, CBT-CN: Common Nouns
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Who-Did-What (WDW)
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Who-Did-What (WDW) Results
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Conclusions

Hypothesis Testing QA

Query memory gating which prevents from forgetting old query and
adaptive computation with termination head
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