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Attention Based Models (RNN)
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Bahdanau et al. (2014)
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Attention Based Models (CNN)

Simonyan et al. (2014)

Sergey Zagoruyko, Nikos Komodakis (UniversPaying More Attention to Attention: Improvir



Outline

@ Introduction

@ State-of-the-art

Sergey Zagoruyko, Nikos Komodakis (UniversPaying More Attention to Attention: Improvir



Knowledge Transfer

o Knowledge Distillation: Training a student network by relying on
knowledge borrowed from a powerful teacher network.

System Test Frame Accuracy | WER
Baselie S 5%
10xEnsemble 61.1% 10.7%
Distilled Single model 60.8% 10.7%

Table 1: Frame classification accuracy and WER showing that the distilled single model performs
about as well as the averaged predictions of 10 models that were used to create the soft targets.

Hinton et al. (2015)

Sergey Zagoruyko, Nikos Komodakis (UniversPaying More Attention to Attention: Improvir



Outline

9 Proposed Approach
@ Attention Transfer

Sergey Zagoruyko, Nikos Komodakis (UniversPaying More Attention to Attention: Improvir



Activation-Based
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Activation-Based: Attention Map

@ Sum of absolute values: Fg;m(A) = Z,C:1 |Ail

@ Sum of absolute values raised to the power p (where p > 1):
Fhum(A) = £y AP

e Max of absolute values raised to the power p (where p > 1):
Fiax(A) = maxi—1 c|Ai|P
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Activation-Based: Attention Map

@ Sum of absolute values: Fgym(A) = Z,C:1 | Al

@ Sum of absolute values raised to the power p (where p > 1):
Fium(A) = S AP

e Max of absolute values raised to the power p (where p > 1):
Fr,:)ax(A) = ’7'7-3Xi:1,C|Ai|IJ
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Activation-Based: ResNet architectures

@ Same depth: attention transfer after every residual block

o Different depth: attention transfer after groups of residual blocks
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Activation-Based: ResNet architectures

@ Same depth: attention transfer after every residual block

o Different depth: attention transfer after groups of residual blocks

groupl group2 group3

= dhdhdh dhhdh Ahhdh

AT loss. AT loss AT loss.

~HH W W

Figure 5: Schematics of teacher-student attention transfer for the case when both networks are
residual, and the teacher is deeper.
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Activation-Based: Attention Loss

Q
Lar = L(Ws, 1) [ -, , @
=T 22 uefnz [
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Gradient Based

@ Attention is defined as gradient w.r.t input (Saliency map in
Simonyan et al. (2014))
d

i)
Js = %L(Ws,m),.]]- E %L{WTJJ @)
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Gradient Based

@ Attention is defined as gradient w.r.t input (Saliency map in
Simonyan et al. (2014))

il i)
Js = ££(Ws,m),.]]- E %L{WTJJ @)

@ Minimize the distance between gradient attention maps of student
and teacher

i
Lyg(Ws,Wr,z) = LW, 1)+ EHJS = Jlls 0
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Gradient Based

@ Attention is defined as gradient w.r.t input (Saliency map in
Simonyan et al. (2014))

Js = EL(WS,I),J’J' =

a

oz

@ Minimize the distance between gradient attention maps of student
and teacher

i
Lyg(Ws,Wr,z) = LW, 1)+ EHJS = Jlls 0

@ Wy and x are give, need to get derivative w.r.t Wg

9 L(WE, )-hﬁ“s [7)

9 2
W= s awgaz Wil ®
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Gradient Based

@ Attention is defined as gradient w.r.t input (Saliency map in
Simonyan et al. (2014))
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a

Oz
@ Minimize the distance between gradient attention maps of student
and teacher

i
Lyg(Ws,Wr,z) = LW, 1)+ EHJS = Jlls 0

@ Wy and x are give, need to get derivative w.r.t Wg

9 L(WE, )-hﬁ“s [7)

W L(Ws, ) )]

8, iz
awg T Wgor

@ Enforce horizontal flip invariance

5 6
[’Eym(wl I) = lZ(W,z) t E‘l%ﬁ(wl I) - ﬂlp(%['(wl ﬂlp[-’”)))”! ) (6)
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Activation Based

afention mapping function | ermor

student techer | student [ AT | AT | KD [ AT+KD | teacher 1o afention transfer 8.7

NN 02 | NNwide, M | 938 (893 [ 005 [855] 83 | 7% Fom 1%
WRN-16-1,00M | WRN-16:2,07M | 877 | 793 | 851 |74l | 731 | 631 Fagum 19
WRN-16-1,00M | WRN-40-L06M | 877 | 825 | 862 839 | 801 | 638 Fadum 9
WRN-I6-0,07M | WRN-40-222M | 631 | 585 | 624 | 608 | 571 | 503 Fr}m B8
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Gradient Based

norm type error
baseline (no attention transfer) 13.5
min-{> Drucker & LeCun (1992) 12.5
grad-based AT 12.1
KD 12.1
symmetry norm 11.8
activation-based AT 11.2
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Transfer learning

type model | ImageNet—+CUB | ImageNet—+Scenes
student | ResNet-18 8.3 28.2

KD | ResNet-18 27(-1.5) 8.1(0.0)

AT | ResNet-18 27(-1.5) 211(-L1)
teacher | ResNet-34 265 26
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@ Present different ways to transfer attention from one network to
another.

@ Demonstrate better performance for image recognition datasets.

@ Future Direction

e Understand how attention transfer works in cases where spatial
information is important e.g. object detection
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