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Task

Task: Study underlying patterns beneath the music surface.

Discovering compositional rules from raw music data: music
theorists develop concepts and rules to describe the regularity in
music compositions;
Computer scientists translated these rules into programs that
automatically generate music.

Forming hierarchical concepts: music theorists have devised
multi-level analytical methods to emphasize the hierarchical structure
of the music.
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Related Work

Adversarial or Collaborative: self-learning loop is similar to GAN.

Interpretable Feature Learning: first recover disentangled
representations, then interpret the semantics of the learned features.

Automatic Musicians: models to automate the interaction of music
theory and composition.
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Musical Raw Representation

Midi number set Ω: {21, 22, . . . , 108}. Correspond to 88 piano keys.

N: Length of choral piece.

Midi matrix X ∈ Ω4×N : Musical raw representation.
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Interpretable Feature Representation

Each sonority p: p ∈ Ω4. Each column in Midi matrix.

Part selection window wI : Ω4 7−→ Ω|I |. w1,4(p) = (p1, p4).

Basic descriptor B: {order , diff , sort,mod12}. Atomic arithmetic
operations.

Descriptor with length k: d(k) = bk ◦ · · · ◦ b1, bi ∈ B

All windows: W = {wi |I ∈ 2{1,2,3,4}\{∅}}
All descriptors with length k : D [k] = {d(k ′)|0 ≤ k ′leqk}
Feature universe: Φ = {d ◦ w |w ∈W , d ∈ D [k]}
Any feature φ ∈ Φ, Ω4 7−→ φ (Ω4)
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Self-Learning Loop

Sq: Tsallis entropy, which achieves a maximum when p is uniform.

Γk : kth rule, containing (φi , p̂φi ).

pk
stu: Sonority distribution. (n-gram)

p<k−1>
φ,stu : Feature distribution.

To get the feature distribution pφ from sonority distribution p(x):
pφ (y) =

∑
x∈φ−1({y})

p(x)
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Feature Induced Partition

Feature induced partition of the input domain Ω4:

Pφ = {φ−1({y})|y ∈ φ(Ω4)}

For two partitions P,Q ∈ Pφ, P is finer than Q (Q is coarser),
written as P � Q, if for all p, p′ ∈ Ω4, p, p′ are in the same cluster
under P => p, p′ are in the same cluster under Q.
P is strictly finer is written as P � Q.
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Conceptual Hierarchy

Based on the relation �, construct the conceptual hierarchy for the
parition family Pφ as a directed acyclic graph:

Node: partitions.

Edge: there’s an edge between any pair of nodes v , v ′ if and only if
the partition referred by v is (strictly) finer than v ′.

A higher level feature induces a coarser partition.
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Informational Hierarchy

Given a trace of extracted rules by the kth iteration of loop, a feature
φ is informationally implied from the extracted rules with tolerance
γ > 0 if:

gap(p<k>
φ,dtu||p̂φ) := D(p<k>

φ,stu||p̂φ) < γ

and
gap(p<k ′>

φ,stu ||p̂φ) ≥ γ,∀k ′ < k

This rule is beyond user’s satisfaction.

Haizi Yu, Lav R. Varshney (University of Illinois at Urbana-Champaign)Towards Deep Interpretability (MUS-ROVER II): Learning Hierarchical Representations of Tonal
ICLR, 2017 Presenter: Xueying Bai 15 /

23



Hierarchical Filters

Add hierarchical filters when selecting rules to prune hierarchically
entangled features and speed up feature selection.

Teacher’s optimization can be represented as:

maximize
φ∈Φ

gap(p<k−1>
φ,stu ||p̂φ)

H(p̂φ) ≤ δ

φ /∈ C (k−1) := {φ|Pφ ≺ Pφ′ , φ
′ ∈ Φ<k−1>}

φ /∈ I (k−1) := {φ|gap(p<k−1>
φ,stu ||p̂φ) < γ}

H(p̂φ) constraint here is based on ‘rules should be relatively easy to
learn’.

By selecting hyper-parameters γ and δ, can control the learning pace.
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Two-Dimensional Memory selection

Rule selecting task: pick the right feature under the right n gram.
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Application

Skip rules that are not so important.
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Fundamentals: Hierarchical 1-gram

For fundamentals, knowledge independent of the context: 1-gram.

With respect to a feature, record the gap between student and Bach
for each iteration.
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Part-writing: n-grams
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Visualizing Bach’s Mind
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