Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer Presenter: Shijia Wang

Noam Shazeer¹ Azalia Mirhoseini¹ Krzysztof Maziarz² Andy Davis¹ Quoc Le¹ Geoffrey Hinton¹ Jeff Dean¹

¹Google Brain, noam,azalia,andydavis,qvl,geoffhinton,jeff@google.com, ²Jagiellonian University, Cracow, krzysztof.maziarz@student.uj.edu.pl

ICLR, 2017

Introduction

Conditional Computation

2 The Mixture-of-Experts Layer (MoE)

- Approach
- Structure
- Performance Challenges
- Balancing Expert Utilization

3 Conclusion

• Experiments

ICLR, 2017

2 / 38

Introduction

• Conditional Computation

The Mixture-of-Experts Layer (MoE)

- Approach
- Structure
- Performance Challenges
- Balancing Expert Utilization

B) Conclusion

• Experiments

- When datasets are large, increasing the number of parameters of neural networks can give much better prediction accuracy.
- Roughly quadratic growth in training cost as both the model size and the number of training examples increase

- Conditional computation schemes parts of a network are used depending on the example
- Gating decisions could be binary or sparse and continuous, stochastic or deterministic
- Various forms of reinforcement learning and back-propagation for training the gating decisions
- None has demonstrated massive improvements

- Most computing devices are much faster at arithmetic than branching
- Conditional computing reduces the batch sizes due to the conditionally active chunk
- Network bandwidth speed is slower than computation speed
- Loose information to achieve the desired level of sparsity.
- Small model capacity for acceptable datasets

Introduction

Conditional Computation

2 The Mixture-of-Experts Layer (MoE)

- Approach
- Structure
- Performance Challenges
- Balancing Expert Utilization

Conclusion

• Experiments

- Consists of a number of experts, each a simple feed-forward neural network
- A trainable gating network which selects a combination of the experts to process each input
- All parts are trained jointly by back-propagation

Figure 1: A Mixture of Experts (MoE) layer embedded within a recurrent language model. In this case, the sparse gating function selects two experts to perform computations. Their outputs are modulated by the outputs of the gating network.

ICLR, 2017 9 / 38

Introduction

Conditional Computation

2 The Mixture-of-Experts Layer (MoE)

Approach

Structure

- Performance Challenges
- Balancing Expert Utilization

Conclusion

• Experiments

- A set of *n* expert networks $E_1, ..., E_n$
- A gating network G that outputs a sparse n-dimensional vector

- Given input x
- *G*(*x*) the output of the gating network
- $E_i(x)$ the output of the *i*-th expert
- The output y is:

$$y = \sum_{i=1}^{n} G(x)_i E_i(x)$$
 (1)

• Whenever $G(x)_i = 0$, the $E_i(x)$ does not need to be calculated

- Reduce branching factor by creating a two-level hierarchy of experts
- Each expert itself is a MoE

• Gating function with trainable weight matrix W_g :

$$G_{\sigma}(x) = Softmax(x * W_g)$$
 (2)

Noam Shazeer, Azalia Mirhoseini, Krzysztof Nutrageously Large Neural Networks: The Sp

• Add sparsity and noise to the Softmax gating network:

$$G(x) = Softmax(KeepTopK(H(x), k))$$
(3)

 $H(x)_{i} = (x * W_{g})_{i} + StandardNormal() * Softplus((x * W_{noise})_{i})$ (4) $KeepTopK(v, k)_{i} = \begin{cases} v_{i}, & \text{if } v_{i} \text{ is in the top } k \text{ elements of } v. \\ -\infty, & \text{otherwise.} \end{cases}$ (5)

- Back-propagation with the rest of the model
- The gate values of the top experts have nonzero derivatives with respect to the weights of the gating network
- Gradients also back-propagate through the gating network to its inputs

Introduction

Conditional Computation

2 The Mixture-of-Experts Layer (MoE)

- Approach
- Structure

• Performance Challenges

Balancing Expert Utilization

Conclusion

• Experiments

ICLR, 2017

17 / 38

- Want large batch sizes
- If the gating chooses k out of n experts for a batch of b examples, each expert receives a batch of approximately kb/n ≪ b examples
- Extremely large batch sizes limited by memory

- Solution: run the standard layers in parallel with different batches of data
- Feed into only 1 shared MoE layer
- Each expert receives a combined batch from all the parallel inputs
- If there are d parallel devices, each expert receives kbd/n examples

- Solution: wait until all timesteps of the previous layer finish
- Experts receive a big batch from all the timesteps

- Solution: wait until all timesteps of the previous layer finish
- Experts receive a big batch from all the timesteps

- Problem: overhead cost for communcating inputs and outputs
- Use a larger hidden layer or more hidden layers within memory limit

Introduction

Conditional Computation

2 The Mixture-of-Experts Layer (MoE)

- Approach
- Structure
- Performance Challenges
- Balancing Expert Utilization

Conclusion

• Experiments

ICLR, 2017

23 / 38

- Could converge to a state that favors a few experts
- Favored experts train more rapidly and are selected even more

• Batch-wise sum of the gate values for an expert:

$$Importance(X) = \sum_{x \in X} G(x)$$
(6)

• Loss added to the overall loss, where *CV* is the coefficient of variance function:

$$L_{importance}(X) = w_{importance} * CV(Importance(X))^2$$
 (7)

• As the gating favors a few experts, the overall loss increases

1 Introduction

Conditional Computation

2 The Mixture-of-Experts Layer (MoE)

- Approach
- Structure
- Performance Challenges
- Balancing Expert Utilization

3 Conclusion

• Experiments

- 829 million words, with a vocabulary of 793,471 words
- Flat MoEs containing 4, 32, and 256 experts
- Hierarchical MoEs containing 256, 1024, and 4096 experts
- Each expert had about 1 million parameters

1 Billion Word Language Modeling Benchmark

Figure 2: Model comparison on 1-Billion-Word Language-Modeling Benchmark. On the left, we plot test perplexity as a function of model capacity for models with similar computational budgets of approximately 8-million-ops-per-timestep. On the right, we plot test perplexity as a function of computational budget. The top line represents the LSTM models from (Jozefowicz et al.) [2016). The bottom line represents 4-billion parameter MoE models with different computational budgets.

Table 1: Summary of high-capacity MoE-augmented models with varying computational budgets, vs. best previously published results (Jozefowicz et al., 2016). Details in Appendix C

	Test	Test	#Parameters	ops/timestep	Training	TFLOPS
	Perplexity	Perplexity	excluding embedding		Time	/GPU
	10 epochs	100 epochs	and softmax layers		10 epochs	
Best Published Results	34.7	30.6	151 million	151 million	59 hours, 32 k40s	1.09
Low-Budget MoE Model	34.1		4303 million	8.9 million	15 hours, 16 k40s	0.74
Medium-Budget MoE Model	31.3		4313 million	33.8 million	17 hours, 32 k40s	1.22
High-Budget MoE Model	28.0		4371 million	142.7 million	47 hours, 32 k40s	1.56

ICLR, 2017 29 / 38

• For a larger training set, high capacities would continue to produce significant quality improvements

ICLR, 2017 30 / 38

100 Billion Word Language Modeling Benchmark

Figure 3: Language modeling on a 100 billion word corpus. Models have similar computational budgets (8 million ops/timestep).

ICLR, 2017 31 / 38

- The WMT14 EnFr with 36M sentence pairs
- The EnDe with 5M sentence pairs
- BLEU (bilingual evaluation understudy) higher is better

Table 2: Results on WMT'14 En \rightarrow Fr newstest2014 (bold values represent best results).

Model	Test	Test	ops/timenstep	Total	Training
	Perplexity	BLEU		#Parameters	Time
MoE with 2048 Experts	2.69	40.35	85M	8.7B	3 days/64 k40s
MoE with 2048 Experts (longer training)	2.63	40.56	85M	8.7B	6 days/64 k40s
GNMT (Wu et al., 2016)	2.79	39.22	214M	278M	6 days/96 k80s
GNMT+RL (Wu et al., 2016)	2.96	39.92	214M	278M	6 days/96 k80s
PBMT (Durrani et al., 2014)		37.0			-
LSTM (6-layer) (Luong et al., 2015b)		31.5			
LSTM (6-layer+PosUnk) (Luong et al., 2015b)		33.1			
DeepAtt (Zhou et al., 2016)		37.7			
DeepAtt+PosUnk (Zhou et al., 2016)		39.2			

Table 3: Results on WMT'14 En \rightarrow De newstest2014 (bold values represent best results).

Model	Test	Test	ops/timestep	Total	Training
	Perplexity	BLEU		#Parameters	Time
MoE with 2048 Experts	4.64	26.03	85M	8.7B	1 day/64 k40s
GNMT (Wu et al., 2016)	5.25	24.91	214M	278M	1 day/96 k80s
GNMT +RL (Wu et al., 2016)	8.08	24.66	214M	278M	1 day/96 k80s
PBMT (Durrani et al., 2014)		20.7			
DeepAtt (Zhou et al., 2016)		20.6			

ICLR, 2017 34 / 38

Table 4: Results on the Google Production $En \rightarrow Fr$ dataset (bold values represent best results).

Model	Eval	Eval	Test	Test	ops/timestep	Total	Training
	Perplexity	BLEU	Perplexity	BLEU		#Parameters	Time
MoE with 2048 Experts	2.60	37.27	2.69	36.57	85M	8.7B	1 day/64 k40s
GNMT (Wu et al., 2016)	2.78	35.80	2.87	35.56	214M	278M	6 days/96 k80s

ICLR, 2017 35 / 38

• About 3B sentence pairs

Noam Shazeer, Azalia Mirhoseini, Krzysztof Nutrageously Large Neural Networks: The Sp

ICLR, 2017 36 / 38

Multilingual Machine Translation

0		(1	
	GNMT-Mono	GNMT-Multi	MoE-Multi	MoE-Multi vs.
				GNMT-Multi
Parameters	278M / model	278M	8.7B	
ops/timestep	212M	212M	102M	
training time, hardware	various	21 days, 96 k20s	12 days, 64 k40s	
Perplexity (dev)		4.14	3.35	-19%
French \rightarrow English Test BLEU	36.47	34.40	37.46	+3.06
German \rightarrow English Test BLEU	31.77	31.17	34.80	+3.63
Japanese \rightarrow English Test BLEU	23.41	21.62	25.91	+4.29
Korean \rightarrow English Test BLEU	25.42	22.87	28.71	+5.84
Portuguese \rightarrow English Test BLEU	44.40	42.53	46.13	+3.60
Spanish \rightarrow English Test BLEU	38.00	36.04	39.39	+3.35
English \rightarrow French Test BLEU	35.37	34.00	36.59	+2.59
English \rightarrow German Test BLEU	26.43	23.15	24.53	+1.38
English \rightarrow Japanese Test BLEU	23.66	21.10	22.78	+1.68
English \rightarrow Korean Test BLEU	19.75	18.41	16.62	-1.79
$English \rightarrow Portuguese Test BLEU$	38.40	37.35	37.90	+0.55
English \rightarrow Spanish Test BLEU	34.50	34.25	36.21	+1.96

Table 5: Multilingual Machine Translation (bold values represent best results).

Noam Shazeer, Azalia Mirhoseini, Krzysztof Mutrageously Large Neural Networks: The Sp

- Algorithmic and engineering solution
- Focused on text experiments but can be applied for other situations