Input Switched Affine Recurrent Networks:An RNN Architecture Designed for Interpretability

Jakob N. Foerster^{* 1}, Justin Gilmer^{*1}, Jascha Sohl-Dickstein¹, Jan Chorowski¹, David Sussillo ¹

¹Google Brain

ICML,2017 Presenter: Arshdeep Sekhon

- Interpreting Neural Networks
- Crucial in many applications: self driving cars, medical diagnosis, power grid control, etc.

くほと くほと くほと

9 Post Hoc Analysis: After training a network, try and analyze it.

★掃♪ ★注♪ ★注♪

1 Post Hoc Analysis: After training a network, try and analyze it.

Obesign interpretability into the architecture

• • = • • = •

- Post Hoc Analysis: After training a network, try and analyze it.
 For example, break down LSTM model errors into classes
 + High Accuracy
 - Hard to interpret
- ② Design interpretability into the architecture

- Post Hoc Analysis: After training a network, try and analyze it.
 For example, break down LSTM model errors into classes
 + High Accuracy
 - Hard to interpret
- ② Design interpretability into the architecture

For example, decision trees, logistic regression, etc.

- + Better understanding
- accuracy suffers

Vanilla RNN

$$\boldsymbol{h}_{t+1} = \sigma(\boldsymbol{U}\boldsymbol{x}_t + \boldsymbol{W}\boldsymbol{h}_t + \boldsymbol{b}) \tag{1}$$

$$\boldsymbol{I}_t = \sigma(\boldsymbol{W}_{ro}\boldsymbol{h}_t + \boldsymbol{b}_{ro}) \tag{2}$$

· · · · · · · · ·

Vanilla RNN

$$\boldsymbol{h}_{t+1} = \sigma(\boldsymbol{U}\boldsymbol{x}_t + \boldsymbol{W}\boldsymbol{h}_t + \boldsymbol{b}) \tag{1}$$

$$\boldsymbol{I}_t = \sigma(\boldsymbol{W}_{ro}\boldsymbol{h}_t + \boldsymbol{b}_{ro}) \tag{2}$$

ISAN

$$\boldsymbol{h}_t = \boldsymbol{W}_{\boldsymbol{x}_t} \boldsymbol{h}_{t-1} + \boldsymbol{b}_{\boldsymbol{x}_t} \tag{3}$$

$$\boldsymbol{I}_t = \boldsymbol{W}_{ro}\boldsymbol{h}_t + \boldsymbol{b}_{ro} \tag{4}$$

・ロト ・聞ト ・ヨト ・ヨト

ISAN: Accuracy Comparison

Parameter count	8e4	3.2e5	1.28e6
RNN	1.88	1.69	1.59
IRNN	1.89	1.71	1.58
GRU	1.83	1.66	1.59
LSTM	1.85	1.68	1.59
ISAN	1.92	1.71	1.58

Figure: *

ISAN performs as well as other recurrent architectures

@▶ ▲登▶ ▲登▶

ISAN: Accuracy Comparison

Parameter count	8e4	3.2e5	1.28e6
RNN	1.88	1.69	1.59
IRNN	1.89	1.71	1.58
GRU	1.83	1.66	1.59
LSTM	1.85	1.68	1.59
ISAN	1.92	1.71	1.58

Figure: *

ISAN performs as well as other recurrent architectures

ISAN

$$\boldsymbol{h}_t = \boldsymbol{W}_{x_t} \boldsymbol{h}_{t-1} + \boldsymbol{b}_{x_t} \tag{5}$$

$$\boldsymbol{I}_t = \boldsymbol{W}_{ro} \boldsymbol{h}_t + \boldsymbol{b}_{ro} \tag{6}$$

ISAN

$$\boldsymbol{h}_{t} = \sum_{s=0}^{t} \Big(\prod_{s'=s+1}^{t} \boldsymbol{W}_{\boldsymbol{x}_{s}'} \Big) \boldsymbol{b}_{\boldsymbol{x}_{s}}$$
(7)

<ロ> <同> <同> <同> <同> <同> <同> <同> <

ISAN

$$\kappa_{s}^{t} = \boldsymbol{W}_{ro} \Big(\prod_{s'=s+1}^{t} \boldsymbol{W}_{x_{s}'} \Big) \boldsymbol{b}_{x_{s}}$$

$$\boldsymbol{I}_{t} = \boldsymbol{b}_{ro} + \sum_{s=0}^{t} \kappa_{s}^{t}$$

$$(8)$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

3

Linearity of κ

Consider string: "_annual_revenue" How does "_annual" affect output after "_rev"?

$$\boldsymbol{I}_{t} = \boldsymbol{b}_{ro} + \sum_{s=0}^{t'} \boldsymbol{\kappa}_{s}^{t} + \sum_{s=t'}^{t} \boldsymbol{\kappa}_{s}^{t}$$
(10)

Figure: *

ISAN: information timescales of network

Figure: *

- A κ_s^t averaged for all characters as a function of t-s
- B Importance of "_" character in decoding
- C Cross entropy as a function of number of characters considered for prediction

Characters to Words

we can aggregate all of the κ_s^t belonging to a given word and visualize them as a single contribution to the prediction of the letters in the next word

Figure: *

- Divide the hidden space into a subspace *P*^{ro}_{||} spanned by the rows of the readout matrix *W*_{ro} and its orthogonal complement *P*^{ro}_⊥
- Thus, 27 dimensions for readout and (216-27) for computational subspace.

・ 何 ト ・ ヨ ト ・ ヨ ト

Change of basis

Figure: *

Information content related to the computation subspace.

A the norm of the learnt b_x is strongly correlated to the log-probability of the unigram x in the training data.

Change of basis

Information content related to the computation subspace.

- A the norm of the learnt b_x is strongly correlated to the log-probability of the unigram x in the training data.
- B this correlation is not related to reading out the next-step prediction

Change of basis

Information content related to the computation subspace.

- A the norm of the learnt b_x is strongly correlated to the log-probability of the unigram x in the training data.
- B this correlation is not related to reading out the next-step prediction
- C This implies a connection between information or surprise and distance in the computational subspace of state space.

- A Cosine distance/ correlation in original space
- B Cosine distance/ correlation in readout space or P_{\parallel}^{ro} two blocks of high correlations between the vowels and consonants respectively, while b_{-} is uncorrelated to either
- C Cosine distance/ correlation in readout space or ${m P}_\perp$

- The Task: Count the number of opened parens [, (
- Input: One hot encoded vector
- Sarget Output: nesting level at previous timestep
- output: two-hot encoded 0-5 count (12 dimensional 2-hot encoded vector)

Using an augmented matrix and an augmented vector, it is possible to represent both the translation and the linear map using a single matrix multiplication: ISAN:

$$\boldsymbol{h}_{t+1} = \boldsymbol{W}\boldsymbol{h}_t + \boldsymbol{b} \tag{11}$$

$$\boldsymbol{h}_{t+1}^{'} = \boldsymbol{W}^{'} \boldsymbol{h}_{t}^{'}$$
 (12)

- Divide the hidden space into a subspace P^{ro}_{||} and its orthogonal complement P^{ro}_⊥
- Learn bases by linear regression to encourage augmented matrices and hidden states to be sparse

伺下 イヨト イヨト

Paranthesis Counting: Change of Bases

$$\mathbf{W}_x' = \begin{bmatrix} \mathbf{W}_x^{rr} & \mathbf{W}_x^{rc} & \mathbf{b}_x^r \\ \mathbf{W}_x^{cr} & \mathbf{W}_x^{cc} & \mathbf{b}_x^c \\ \mathbf{0}^T & \mathbf{0}^T & 1 \end{bmatrix} \quad \mathbf{h}_t' = \begin{bmatrix} \mathbf{h}_t^r \\ \mathbf{h}_t^c \\ 1 \end{bmatrix}$$

and the update equation can be written as

$$\mathbf{h}_{t+1}' = \mathbf{W}_x' \mathbf{h}_t' = \begin{bmatrix} \mathbf{W}_x^{rr} \mathbf{h}_t^r + \mathbf{W}_x^{rc} \mathbf{h}_t^c + \mathbf{b}_x^r \\ \mathbf{W}_x^{cr} \mathbf{h}_t^r + \mathbf{W}_x^{cc} \mathbf{h}_t^c + \mathbf{b}_x^c \\ 1 \end{bmatrix}.$$

Figure: Equations after subspace decomposition

・ 何 ト ・ ヨ ト ・ ヨ ト

Paranthesis Counting: Interpretation

Figure: Dynamics of ISAN for '['

Jakob N. Foerster* , Justin Gilmer*, Jascha Input Switched Affine Recurrent Networks: An

Paranthesis Counting: Interpretation

Figure: Dynamics of ISAN for '['

•
$$\boldsymbol{W}_{[}^{rc}$$
 is identity; $h_{t}^{r} = h_{t-1}^{c}$

3 🕨 🖌 3

Paranthesis Counting: Interpretation

Figure: Dynamics of ISAN for 'I': Delay Line Dynamics

Jakob N. Foerster* , Justin Gilmer*, Jascha Input Switched Affine Recurrent Networks:An