Learning End-to-End Goal-Oriented Dialog

Antoine Bordes, Y-Lan Boureau, Jason Weston

 1 Facebook

ICLR 2017 Presenter: Jack Lanchantin

Antoine Bordes, Y-Lan Boureau, Jason Weste Learning End-to-End Goal-Oriented Dialog

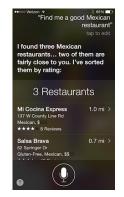
Goal Oriented Dialog Tasks

2 Models

- Rule-based Systems
- Classic IR Methods
- Supervised Embedding Models
- Memory Networks

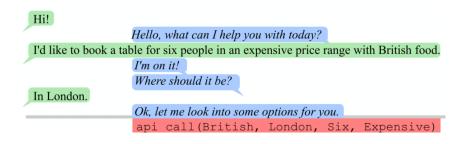
3 Experiments

- Goal oriented dialog: understand a user request and complete a task
- "Slot filling": predefine the structure of a dialog state as a set of slots to be filled
 - e.g. restaurant reservation system slots: location, price, cuisine type
 - Doesn't scale to new domains

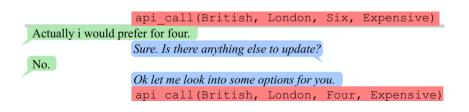


- All components are trained on past dialog. Usually done in non-goal oriented "chit-chat" settings
- Goal oriented dialog goes beyond language modeling.
 - e.g. asking questions to clearly define user requests, querying KBs
- **This paper**: can end-to-end models be competitive with traditional slot-filling models?

- Goal: book a table at a restaurant
- Data: simulation based on a KB whose facts contain restaurants and four types of properties:
 - Type: 10 choices (French, Thai, ...)
 - Location: 10 choices (London, Tokyo, ...)
 - O Price Range: 3 choices (cheap, moderate, expensive)
 - Rating: 8 choices (1,2,...,8)
- Approach: evaluate models on 4 sub-tasks of restaurant reservation

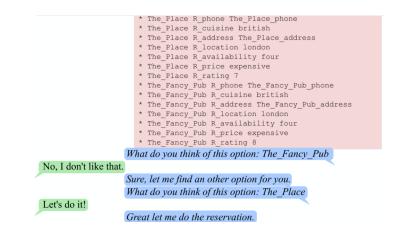


• Bot must ask questions for filling the missing fields and eventually generate the correct corresponding API call.



• Users ask to update their requests between 1 and 4 times (sampled uniformly). Bot must correct for changes.

Task 3: Displaying Options



- Given a user request, query the KB using API call and add the facts from the call to dialog history.
- Propose options to users by listing restaurant names sorted by rating

Can you provide m	e the address?
	Here it is: The_Place_address.
You rock!	
	Is there anything else I can help you with?
No thanks.	
	You're welcome.

• Users ask for the phone number of the restaurant, address, or both

• Bot must learn to use the KB facts correctly to answer

Task 5: Full Dialog

Task 5 Conducting full dialogs

22

	Tasks	T1	Т2	T3	T4	Т5	T6	Concierge
	Number of utterances:	12	17	43	15	55	54	8
DIALOGS	- user utterances		7	7	4	13	6	4
Average statistics	- bot utterances		10	10	4	18	8	4
	- outputs from API calls	0	0	23	7	24	40	0
	Vocabulary size	3,747			1,229	8,629		
	Candidate set size	4,212			2,406	11,482		
DATASETS	Training dialogs	1,000			1,618	3,249		
Tasks 1-5 share the	Validation dialogs	1,000			500	403		
same data source	Test dialogs	1,000(*)			1,117	402		

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

	Tasks	T1	T2	T3	T4	Т5	T6	Concierge
	Number of utterances:	12	17	43	15	55	54	8
DIALOGS	- user utterances		7	7	4	13	6	4
Average statistics	- bot utterances		10	10	4	18	8	4
	- outputs from API calls	0	0	23	7	24	40	0
	Vocabulary size	3,747			1,229	8,629		
	Candidate set size	4,212				2,406	11,482	
DATASETS	Training dialogs	1,000			1,618	3,249		
Tasks 1-5 share the	Validation dialogs	1,000			500	403		
same data source	Test dialogs	1,000(*)			1,117	402		

• At each turn of the dialog, test if model can predict bot utterances and API calls by selecting a candidate

• Candidates are ranked from a set of all bot utterances and API calls

1 Goal Oriented Dialog Tasks

2 Models

Rule-based Systems

- Classic IR Methods
- Supervised Embedding Models
- Memory Networks

B Experiments

- For tasks T1-T5, it is possible to hand-code a rule based system that achieves 100%.
- Tasks T6 and Concierge are not simulated, so they require more complex rules (which is hopefully where machine learning can help).

Goal Oriented Dialog Tasks

D Models

Rule-based Systems

Classic IR Methods

- Supervised Embedding Models
- Memory Networks

B Experiments

TF-IDF Match

• Rank candidate responses by matching score between the input and the response

Nearest Neighbor

• Using the input, find the most similar conversation in training set, and output the response from that conversation

Goal Oriented Dialog Tasks

D Models

- Rule-based Systems
- Classic IR Methods
- Supervised Embedding Models
- Memory Networks

B Experiments

- Candidate reponse y scored against input x: $f(x, y) = (Ax)^T By$
 - A and B are $d \times V$ word embedding matrices
- Embeddings trained with margin ranking loss: $f(x,y) > m + f(x,\bar{y})$

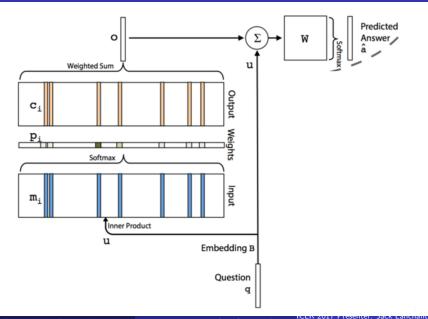
Goal Oriented Dialog Tasks

2 Models

- Rule-based Systems
- Classic IR Methods
- Supervised Embedding Models
- Memory Networks

B Experiments

Memory Networks



 Augment the vocab with 7 special words, one for each of the KB entity types (cuisine type, location, price range, party size, rating, phone number and address).

Task	Rule-based	TF-IDF	Match	Nearest	Supervised	Memory 1	Networks
	Systems	no type	+ type	Neighbor	Embeddings	no match type	+ match type
T1: Issuing API calls	100 (100)	5.6 (0)	22.4(0)	55.1 (0)	100 (100)	99.9 (99.6)	100 (100)
T2: Updating API calls	100 (100)	3.4 (0)	16.4(0)	68.3 (0)	68.4 (0)	100 (100)	98.3 (83.9)
T3: Displaying options	100 (100)	8.0 (0)	8.0 (0)	58.8 (0)	64.9 (0)	74.9 (2.0)	74.9 (0)
T4: Providing information	100 (100)	9.5 (0)	17.8(0)	28.6 (0)	57.2 (0)	59.5 (3.0)	100 (100)
T5: Full dialogs	100 (100)	4.6 (0)	8.1 (0)	57.1 (0)	75.4 (0)	96.1 (49.4)	93.4 (19.7)
T1(OOV): Issuing API calls	100 (100)	5.8 (0)	22.4(0)	44.1 (0)	60.0 (0)	72.3 (0)	96.5 (82.7)
T2(OOV): Updating API calls	100 (100)	3.5 (0)	16.8(0)	68.3 (0)	68.3 (0)	78.9 (0)	94.5 (48.4)
T3(OOV): Displaying options	100 (100)	8.3 (0)	8.3 (0)	58.8 (0)	65.0 (0)	74.4 (0)	75.2 (0)
T4(OOV): Providing inform.	100 (100)	9.8 (0)	17.2(0)	28.6 (0)	57.0 (0)	57.6 (0)	100 (100)
T5(OOV): Full dialogs	100 (100)	4.6 (0)	9.0 (0)	48.4 (0)	58.2 (0)	65.5 (0)	77.7 (0)
T6: Dialog state tracking 2	33.3 (0)	1.6 (0)	1.6 (0)	21.9 (0)	22.6 (0)	41.1 (0)	41.0 (0)
Concierge ^(*)	n/a	1.1 (0.2)	n/a	13.4 (0.5)	14.6 (0.5)	16.7 (1.2)	n/a ^(†)

• Metrics: Per-response accuracy and (Per-dialog accuracy)

- Open dataset and task set for evaluating end-to-end goal-oriented dialog learning methods in a systematic and controlled way.
- The breakdown in tasks will help focus research and development to improve the learning methods
- Illustrated how to use the testbed using Memory Networks, which prove an effective model on these tasks relative to other baselines, but are still lacking in some key areas.