Nonparametric Neural Networks

George Philipp, Jamie G. Carbonell!

LCarnegie Mellon University

ICLR,2017
Presenter: Bargav Jayaraman

George Philipp, Jamie G. Carbonell (Carnegi Nonparametric Neural Networks



@ Introduction
© Related Works
© Nonparametric Neural Networks

@ Training Nonparametric Neural Networks
@ Controlling Network Size with Zero-Units
@ Self-Similar Nonlinearities
@ Capped Batch Normalization
@ Adaptive Radial-Angular Gradient Descent (AdaRad)

© Experiments
@ Performance
@ Analysis of Nonparametric Training Process
@ Scalability

@ Conclusion

George Philipp, Jamie G. Carbonell (Carnegi Nonparametric Neural Networks



Introduction

@ Problem of model selection deals with finding the best model for a
given task.

@ Goal of model selection: find the hyperparameter § € © that
minimizes a criterion c(#).

@ Problem: Parameter space © is large, thus finding optimal ¢ is hard.
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Related Works

© Black-box models - select a 6, test c(f), select another 6 until
convergence or time over. E.g. grid search, random search, etc.
Problem: expensive, cannot alter # during runtime.

© Pruning based models - Begin eliminating unnecessary weight

connections from a trained model via regularization.
Problem: require a pre-trained model to begin with.
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Nonparametric Neural Networks

Optimization problem of nonparametric neural network is represented as:

. ) 1
min min —
d=(d);,d|€Z4+,1<I<L-1 w:(w),,W,E]Rdlfl*d’,lS/gL |D|

D e(f(W,x),y)+Q(W)

(x,y)eD

do and d; are fixed because input data and error function e are fixed.
Parameters form the pair (d, W).

Fan-in and fan-out regularizers are defined as:

Qin(W, A, p) AZZH[WI(U Wi(2.4), .., Wildi—1, )]l
=1 j=1

L di1

Qout(W, A, p) = A ) Wi, 1), Wi(i,2), .., Wi(i, d)]l
=1 i=1
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@ Training Nonparametric Neural Networks
@ Controlling Network Size with Zero-Units
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Controlling Network Size with Zero-Units

@ Zero units are units with either fan-in or fan-out or both as zero
vectors.

e generated by fan-in or fan-out regularization.

o f-equivalence defines the notion of similarity between two network
architectures (d1, W1) and (da, W3): f(W1, x) = f(W>, x), where
not necessarily di = d».

e Adding or removing zero-units preserves f-equivalence. (provided we
use non-linearity function o such that ¢(0) =0 - e.g. Relu)
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@ Training Nonparametric Neural Networks

@ Self-Similar Nonlinearities
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Self-Similar Nonlinearities

@ Self-similar nonlinearities are invariant to scaling, i.e., they satisfy
o(cs) = co(s),Vec € R>p,s € R E.g. Relu.

@ Self-similar nonlinearities are required because of the usage of fan-in
and fan-out regularization that shrink (or rescale) the weights.

Proposition
If all nonlinearities in a nonparametric network model except possible o
are self-similar, then the objective function using a fan-in or fan-out
regularizer with different regularization parameters A1, ..., A\; for each layer
is equivalent to the same objective function using the single regularization
parameter A = (Hf‘:1 )\/)% for each layer, up to rescaling of weights.
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@ Capped Batch Normalization
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Capped Batch Normalization

@ Batch normalization cannot be applied directly to nonparametric
neural network as it negates the effect of regularization - since fan-in
or fan-out regularizer will try to shrink the weights arbitrarily while
compensating the batch normalization layer.

e Capped Batch Normalization (CapNorm) is introduced for
compatibility with regularization.

@ CapNorm replaces each pre-activation z with % where 1 is

mean and o is standard deviation of a unit's pre-activations across

the current mini-batch.
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@ Training Nonparametric Neural Networks

o Adaptive Radial-Angular Gradient Descent (AdaRad)
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Adaptive Radial-Angular Gradient Descent (AdaRad)

1 input: o radial step size; o, angular step size; A: regularization hyperparameter; 3: mixing
rate; e: numerical stabilizer; d”: initial dimensions; W initial weights; »: unit addition
rate; Vig: unit addition frequency; T number of iterations

0

1 G = 0 Coe =d%wW=w"

s forl=1to Ldo

Il set ¢ (angular quadratic running average) and ¢; (angular quadratic running average capacity)
to zero vectors of size df;

s end

o fort=1to T do
set 1 to mini-batch used at iteration t;
8 G= J]_JV“ E[!.y!if}‘ e(f{W,z),¥):
9 fori = Ltoldo
10 forj =d to1do
i decompose [(;(4, 7)]; into a component parallel to [W; (4, 5)]; (call it7) and a
component orthogonal ta [ (i, 5)]: (call it &) such that [Gi(i, )], = r + &;

u @) = (1= B)éulg) + Bllg|[s e (3) = (1 - 'ﬂﬂ( 1+ 8
13 Brns = MAX( P, B1(F)); Conax = MAXCrrar, €1 (4))
u gy =
oy e
1 Wili, 3]s = [Wili 5)]i — e
1 rotate [Wi (i, j)]; by angle o[y |2 in direction
,: ihrink([W'[(;',j]],‘zxrz\l":J—'j:
1 il < L and [Wili, §)]; is a zero vecior then -
it remove column j from Wi; remove row j from W;.,; remove element j from oy

and c;; decrement dy;

od V., then

// if v¢€Z, we can set e.g. ' =Foisson(y)
24 add v/ randnm]y initialized columns to WW); add v’ zero rows to W_; add v* zero
elements to ¢y and ¢ di = d; + V'
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© Experiments
@ Performance
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Performance

gy = 310, repeatedly divided by 3 when validation error stops improving.

oy = 50N"
A values are 3 %1073, 1073 and 3 % 10~* for MNIST, 3% 107 and 10~
for rectangles images and 10~8 for convex.
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© Experiments

@ Analysis of Nonparametric Training Process

George Philipp, Jamie G. Carbonell (Carnegi Nonparametric Neural Networks



Analysis of Nonparametric Training Process

ag =10, A =3 % 10~*. Final model has 193 X 36 units on MNIST.

(A) Validation classification error

(B) Training cross-entropy error

(C) Size of hidden layers
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© Experiments

@ Scalability
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Scalability

4 hidden layers instead of 2, o, = 5%\ adding new units every 10th epoch.

Table 2: Test classification error of various models trained on the poker dataset.

Algorithm A Starting net size Final net size Error
Logistic regression (ours) 49.9%
Naive bayes (OpenML) 48.3%
Decision tree (OpenML) 26.8%

1072 10-10-10-10 23-24-15-4 0.62%

1075 10-10-10-10 04-135-105-35  0.022%
10— 10-10-10-10 210-251-224-104 0.001%
1077 10-10-10-10 299-258-259-129 0%

Nonparametric net

23-24-15-4 unchanged 0.20%
Parametric net 94-135-105-35 unchanged 0.003%
210-251-224-104 unchanged 0.003%

299-258-259-129 unchanged 0.002%
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Conclusion

© Nonparametric neural network is proposed which automatically learns
the optimal network structure.

@ Experimental results supporting that nonparametric neural networks
outperform parametric neural networks (in most of the cases) under
the same settings of network size.

© Theoretical soundness of the framework is provided.
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