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Introduction

Problem of model selection deals with finding the best model for a
given task.

Goal of model selection: find the hyperparameter θ ∈ Θ that
minimizes a criterion c(θ).

Problem: Parameter space Θ is large, thus finding optimal θ is hard.
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Related Works

1 Black-box models - select a θ, test c(θ), select another θ until
convergence or time over. E.g. grid search, random search, etc.
Problem: expensive, cannot alter θ during runtime.

2 Pruning based models - Begin eliminating unnecessary weight
connections from a trained model via regularization.
Problem: require a pre-trained model to begin with.
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Nonparametric Neural Networks

Optimization problem of nonparametric neural network is represented as:

min
d=(d)l ,dl∈Z+,1≤l≤L−1

min
w=(w)l ,wl∈Rdl−1∗dl ,1≤l≤L

1

|D|
∑

(x ,y)∈D

e(f (W, x), y)+Ω(W)

d0 and dL are fixed because input data and error function e are fixed.
Parameters form the pair (d,W).
Fan-in and fan-out regularizers are defined as:

Ωin(W, λ, p) = λ

L∑
l=1

dl∑
j=1

‖[Wl(1, j),Wl(2, j), ...,Wl(dl−1, j)]‖p

Ωout(W, λ, p) = λ

L∑
l=1

dl−1∑
i=1

‖[Wl(i , 1),Wl(i , 2), ...,Wl(i , dl)]‖p
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Controlling Network Size with Zero-Units

Zero units are units with either fan-in or fan-out or both as zero
vectors.

generated by fan-in or fan-out regularization.

f-equivalence defines the notion of similarity between two network
architectures (d1,W1) and (d2,W2): f (W1, x) = f (W2, x), where
not necessarily d1 = d2.

Adding or removing zero-units preserves f-equivalence. (provided we
use non-linearity function σ such that σ(0) = 0 - e.g. ReLu)
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Self-Similar Nonlinearities

Self-similar nonlinearities are invariant to scaling, i.e., they satisfy
σ(cs) = cσ(s),∀c ∈ R≥0, s ∈ R E.g. ReLu.

Self-similar nonlinearities are required because of the usage of fan-in
and fan-out regularization that shrink (or rescale) the weights.

Proposition

If all nonlinearities in a nonparametric network model except possible σL
are self-similar, then the objective function using a fan-in or fan-out
regularizer with different regularization parameters λ1, ..., λL for each layer
is equivalent to the same objective function using the single regularization

parameter λ = (
∏L

l=1 λl)
1
L for each layer, up to rescaling of weights.
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Capped Batch Normalization

Batch normalization cannot be applied directly to nonparametric
neural network as it negates the effect of regularization - since fan-in
or fan-out regularizer will try to shrink the weights arbitrarily while
compensating the batch normalization layer.

Capped Batch Normalization (CapNorm) is introduced for
compatibility with regularization.

CapNorm replaces each pre-activation z with z−µ
max(σ,1) , where µ is

mean and σ is standard deviation of a unit’s pre-activations across
the current mini-batch.
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Adaptive Radial-Angular Gradient Descent (AdaRad)
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Performance

αφ = 30, repeatedly divided by 3 when validation error stops improving.
αr = 1

50λ .
λ values are 3 ∗ 10−3, 10−3 and 3 ∗ 10−4 for MNIST, 3 ∗ 10−5 and 10−6

for rectangles images and 10−8 for convex.
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Analysis of Nonparametric Training Process

αφ = 10, λ = 3 ∗ 10−4. Final model has 193 X 36 units on MNIST.

George Philipp, Jamie G. Carbonell (Carnegie Mellon University)Nonparametric Neural Networks
ICLR,2017 Presenter: Bargav Jayaraman 17

/ 20



Outline

1 Introduction

2 Related Works

3 Nonparametric Neural Networks

4 Training Nonparametric Neural Networks
Controlling Network Size with Zero-Units
Self-Similar Nonlinearities
Capped Batch Normalization
Adaptive Radial-Angular Gradient Descent (AdaRad)

5 Experiments
Performance
Analysis of Nonparametric Training Process
Scalability

6 Conclusion

George Philipp, Jamie G. Carbonell (Carnegie Mellon University)Nonparametric Neural Networks
ICLR,2017 Presenter: Bargav Jayaraman 18

/ 20



Scalability

4 hidden layers instead of 2, αr = 1
5λ , adding new units every 10th epoch.

George Philipp, Jamie G. Carbonell (Carnegie Mellon University)Nonparametric Neural Networks
ICLR,2017 Presenter: Bargav Jayaraman 19

/ 20



Conclusion

1 Nonparametric neural network is proposed which automatically learns
the optimal network structure.

2 Experimental results supporting that nonparametric neural networks
outperform parametric neural networks (in most of the cases) under
the same settings of network size.

3 Theoretical soundness of the framework is provided.
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