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Introduction

1 Task: Learn programs from data

2 For example, Addition, sorting, etc.

3 Not only sort an array, but learn a specific sorting algorithm

4 Evaluating the model: Check how well the model performs on more
complex inputs
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Previous Approaches

Two categories based on type of training data:

1 Neural Turing Machine, Pointer Networks, etc: input-output pairs

2 Neural programming Interpreter: Synthetic execution traces
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Neural Programming Interpreter

Figure: NPI Core
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Neural Programming Interpreter Architecture

st = fenc(et , at)

ht = flstm(st , pt , ht−1)

rt = fend(ht)

kt = fprog (ht)

at+1 = farg (ht)

(1)

1 et current environment state; for example: progress/which digit is
currently beeing added

2 at the input value: For example, while writing output, the number
that is to be written

3 rt : the probability whether to stop execution of program and return
to caller
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NPI Architecture

st = fenc(et , at)

ht = flstm(st , pt , ht−1)

rt = fend(ht)

kt = fprog (ht)

at+1 = farg (ht)

(2)

1 kt : program key that points to the progrma’s embedding

2 fenc : E× A→ RD is a domain specific encoder.
fend : RM → [0, 1],fprog : RM → RK ,farg : RM → A
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NPI Inference

Figure: NPI Algorithm
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NPI Inference

Figure: NPI algorithm
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Grade School Addition Execution Trace

Figure: Addition
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NPI Inference

Figure: Addition using NPI
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Training of NPI

1 Use execution traces

2 ξinpt : {et , it , at} and ξoutt : {rt , it+1, at+1} for t = 1, . . . ,T

3 Curriculum learning
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Poor Generalization

Figure: Previous models suffer from poor generalization beyond a threshold level
of complexity

1 Curriculum Learning: train on morecomplex inputs

2 No change in learnt semantics

3 Model ends up learning overly complex representations, example,
dependece on length

4 Learn recursion
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Recursion

1 Base Case: termination criteria/ no more recusrion

2 Rules: to reduce all problems towards base case

NPI can easily incorporate Recursion.

1 NPI has a call structure

2 Implement recursion as a program calling itself.
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Adding Recursion to NPI

1 Recursion helps to generalize as well as makes it easier to prove
generalization

2 To prove generalization:
1 Learns base cases correctly
2 Learns reduction rules correctly

3 Reduction rules and base cases are finite for programs, unlike infinite
possible complex inputs

4 reduces the number of configurations that need to be considered
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Adding Recursion to NPI

Figure: Recursive Addition

1 To add recursion, change the execution traces: new training traces
that explicitly contain recursive elements
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Provable Guarantees of Generalization

Verification Theorem

∀ i ∈ V , M(i) ⇓ P(i)
i: a sequence of step inputs
V: set of valid sequences of step inputs
P: correct program/algorithm M: Model

For the same sequence of step inputs, the model produces exact same step
output as the program it tries to learn
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Constructing Verification Set for Addition

For non recursive:

1 1 + 1=2

2 99+99=198

3 99..99 + 99..99 =

4 Infinite input sequences

For Recursive cases:

1 Only need to take care of two columns

2 20000 cases
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Results

Figure: Sorting
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