Making Neural Programming Architectures Generalize via Recursion

Jonathon Cai¹, Richard Shin¹, Dawn Song¹

¹University of California, Berkeley

ICLR,2017 Presenter: Arshdeep Sekhon

Jonathon Cai, Richard Shin, Dawn Song (UrMaking Neural Programming Architectures G

- Task: Learn programs from data
- Is For example, Addition, sorting, etc.

(日) (周) (三) (三)

- Task: Learn programs from data
- Is For example, Addition, sorting, etc.
- Solution only sort an array, but learn a specific sorting algorithm

・ロト ・聞ト ・ ヨト ・ ヨト

- Task: Learn programs from data
- Isor example, Addition, sorting, etc.
- In the second second
- Evaluating the model: Check how well the model performs on more complex inputs

- 4月 ト 4 ヨ ト 4 ヨ ト

Two categories based on type of training data:

- **1** Neural Turing Machine, Pointer Networks, etc: input-output pairs
- ② Neural programming Interpreter: Synthetic execution traces

< 回 ト < 三 ト < 三 ト

Neural Programming Interpreter

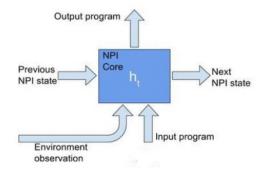


Figure: NPI Core

< 回 > < 三 > < 三 >

Neural Programming Interpreter Architecture

$$s_{t} = f_{enc}(e_{t}, a_{t})$$

$$h_{t} = f_{lstm}(s_{t}, p_{t}, h_{t-1})$$

$$r_{t} = f_{end}(h_{t})$$

$$k_{t} = f_{prog}(h_{t})$$

$$a_{t+1} = f_{arg}(h_{t})$$
(1)

- e_t current environment state; for example: progress/which digit is currently beeing added
- a_t the input value: For example, while writing output, the number that is to be written
- It is the probability whether to stop execution of program and return to caller

$$s_{t} = f_{enc}(e_{t}, a_{t})$$

$$h_{t} = f_{lstm}(s_{t}, p_{t}, h_{t-1})$$

$$r_{t} = f_{end}(h_{t})$$

$$k_{t} = f_{prog}(h_{t})$$

$$a_{t+1} = f_{arg}(h_{t})$$
(2)

 k_t: program key that points to the progrma's embedding
 f_{enc} : E × A → R^D is a domain specific encoder. f_{end} : R^M → [0, 1], f_{prog} : R^M → R^K, f_{arg} : R^M → A

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Algorithm 1 Neural programming inference

1: Inputs: Environment observation e, program p, arguments a, stop threshold α

Figure: NPI Algorithm

<ロ> (日) (日) (日) (日) (日)

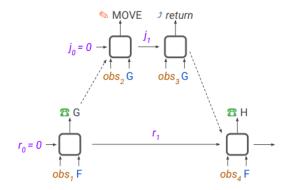


Figure: NPI algorithm

米部ト 米国ト 米国ト

Non-Recursive

1	ADD
2	ADD1
3	WRITE OUT 1
4	CARRY
5	PTR CARRY LEFT
6	WRITE CARRY 1
7	PTR CARRY RIGHT
8	LSHIFT
9	PTR INP1 LEFT
10	PTR INP2 LEFT
11	PTR CARRY LEFT
12	PTR OUT LEFT
13	ADD1
14	

Figure: Addition

夏

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

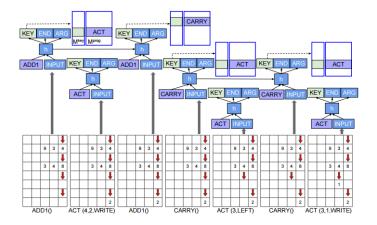


Figure: Addition using NPI

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Use execution traces
- **2** ξ_t^{inp} : $\{e_t, i_t, a_t\}$ and ξ_t^{out} : $\{r_t, i_{t+1}, a_{t+1}\}$ for t = 1, ..., T
- Ourriculum learning

イロト 不得下 イヨト イヨト 二日

Poor Generalization

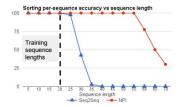


Figure: Previous models suffer from poor generalization beyond a threshold level of complexity

- Ourriculum Learning: train on morecomplex inputs
- 2 No change in learnt semantics
- Model ends up learning overly complex representations, example, dependece on length
- Learn recursion

- 4 3 6 4 3 6

- Base Case: termination criteria/ no more recusrion
- Q Rules: to reduce all problems towards base case
- NPI can easily incorporate Recursion.
 - In NPI has a call structure
 - Implement recursion as a program calling itself.

- 4 目 ト - 4 日 ト - 4 日 ト

- Recursion helps to generalize as well as makes it easier to prove generalization
- 2 To prove generalization:
 - Learns base cases correctly
 - 2 Learns reduction rules correctly
- Reduction rules and base cases are finite for programs, unlike infinite possible complex inputs
- reduces the number of configurations that need to be considered

Adding Recursion to NPI

Non-Recursive

1	ADD
2	ADD1
3	WRITE OUT 1
4	CARRY
5	PTR CARRY LEFT
6	WRITE CARRY 1
7	PTR CARRY RIGHT
8	LSHIFT
9	PTR INP1 LEFT
10	PTR INP2 LEFT
11	PTR CARRY LEFT
12	PTR OUT LEFT
13	ADD1
14	

Recursive

1	ADD
2	ADD1
3	WRITE OUT 1
4	CARRY
5	PTR CARRY LEFT
6	WRITE CARRY 1
7	PTR CARRY RIGHT
8	LSHIFT
9	PTR INP1 LEFT
0	PTR INP2 LEFT
1	PTR CARRY LEFT
2	PTR OUT LEFT
3	ADD
4	

イロト イポト イヨト イヨト

Figure: Recursive Addition

To add recursion, change the execution traces: new training traces that explicitly contain recursive elements

Verification Theorem

 $\forall i \in V, M(i) \Downarrow P(i)$

- i: a sequence of step inputs
- V: set of valid sequences of step inputs
- P: correct program/algorithm M: Model

For the same sequence of step inputs, the model produces exact same step output as the program it tries to learn For non recursive:

- 1 + 1=2
- 99+99=198
- 99..99 + 99..99 =
- Infinite input sequences

For Recursive cases:

- Only need to take care of two columns
- 20000 cases

Results

Table 2: Accuracy on Randomly Generated Problems for Topological Sort

Number of Vertices	Non-Recursive	Recursive
5	6.7%	100%
6	6.7%	100%
7	3.3%	100%
8	0%	100%
70	0%	100%

Table 3: Accuracy on Randomly Generated Problems for Quicksort

Length of Array	Non-Recursive	Recursive
3	100%	100%
5	100%	100%
7	100%	100%
11	73.3%	100%
15	60%	100%
20	30%	100%
22	20%	100%
25	3.33%	100%
30	3.33%	100%
70	0%	100%

Figure: Sorting

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ● 注