Learning Structured Sparsity in Deep Neural Networks

Wei Wen¹ Chunpeng Wu¹ Yandan Wang¹ Yiran Chen¹ Hai Li^1

¹University of Pittsburgh

NIPS, 2016 Presenter: Bargav Jayaraman

Wei Wen, Chunpeng Wu, Yandan Wang, YiraLearning Structured Sparsity in Deep Neural I

Outline

Introduction

2 Related Works

Proposed Structure Sparsity Learning Approach

- SSL for Generic Structures
- SSL for Filters and Channels
- SSL for Filter Shapes
- SSL for Layer Depth
- SSL for Computationally Efficient Structures

Experimental Results

- **Problem:** Deployment of large-scale deep learning model is computationally expensive
- **Solution:** Occam's Razor Simple is better! Remove or zero-out the non-essential weights / layers of the model

- **Problem:** Deployment of large-scale deep learning model is computationally expensive
- Solution: Occam's Razor Simple is better! Remove or zero-out the non-essential weights / layers of the model Catch: Trade-off between model complexity and accuracy

Related Works

- Connection pruning and weight sparsifying. Connection pruning removes unwanted weight connections from the fully connected layers of a CNN. Not much beneficial for convolutional layers! Hard-coding sparse weights for convolutional layers introduces non-structured sparsity with slight accuracy loss.
 - This work achieves structured sparsity in adjacent memory space

Related Works

- Connection pruning and weight sparsifying. Connection pruning removes unwanted weight connections from the fully connected layers of a CNN. Not much beneficial for convolutional layers! Hard-coding sparse weights for convolutional layers introduces non-structured sparsity with slight accuracy loss.
 - This work achieves structured sparsity in adjacent memory space
- Low rank approximation. LRA compresses the deep network by decomposing the weight matrix $W \in \mathbb{R}^{u \times v}$ at every layer into product of two matrices $U \in \mathbb{R}^{u \times \alpha}$ and $V \in \mathbb{R}^{\alpha \times v}$, where $\alpha < u, v$.

- This work dynamically optimizes the model and obtains lower rank approximation

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Related Works

- Connection pruning and weight sparsifying. Connection pruning removes unwanted weight connections from the fully connected layers of a CNN. Not much beneficial for convolutional layers! Hard-coding sparse weights for convolutional layers introduces non-structured sparsity with slight accuracy loss.
 - This work achieves structured sparsity in adjacent memory space
- Low rank approximation. LRA compresses the deep network by decomposing the weight matrix $W \in \mathbb{R}^{u \times v}$ at every layer into product of two matrices $U \in \mathbb{R}^{u \times \alpha}$ and $V \in \mathbb{R}^{\alpha \times v}$, where $\alpha < u, v$.
 - This work dynamically optimizes the model and obtains lower rank approximation
- **Model structure learning.** Group Lasso has been used for structure sparsity in deep models to learn the appropriate number of filters or filter shapes.
 - This work applies group Lasso at various levels of the deep model

- * @ * * 注 * * 注 * … 注

2 Related Works

Proposed Structure Sparsity Learning Approach

SSL for Generic Structures

- SSL for Filters and Channels
- SSL for Filter Shapes
- SSL for Layer Depth
- SSL for Computationally Efficient Structures

4 Experimental Results

Consider the weights of a deep network as a 4-D tensor: $W^{(I)} \in \mathbb{R}^{N_l \times C_l \times M_l \times K_l}$, where N_l , C_l , M_l and K_l are the dimensions of the *l*-th layer $(1 \le l \le L)$ weight tensor along the axes of filter, channel, spatial height and spatial width. *L* denotes the number of convolutional layers. Then the proposed generic optimization is:

$$E(W) = E_D(W) + \lambda R(W) + \lambda_g \sum_{l=1}^{L} R_g(W^{(l)})$$

 $E_D(W)$ is the loss on data, R(.) is the non-structured regularizer, like l_2 -norm, and $R_g(.)$ is the structured regularizer. This work uses group Lasso for $R_g(.)$.

(本部) (本語) (本語) (二語)

- The regularization of group Lasso on a set of weights w is given as: $R_g(w) = \sum_{g=1}^{G} ||w^{(g)}||_g$, where g is a group of partial weights in wand G is the total number of groups.
- $\|.\|_g$ is the group Lasso, or $\|w^{(g)}\|_g = \sqrt{\sum_{i=1}^{|w^{(g)}|} (w_i^{(g)})^2}$, where $|w^{(g)}|$ is the number of weights in $w^{(g)}$.

(聞) くほり くほり 二日

- The regularization of group Lasso on a set of weights w is given as: $R_g(w) = \sum_{g=1}^{G} ||w^{(g)}||_g$, where g is a group of partial weights in wand G is the total number of groups.
- $\|.\|_g$ is the group Lasso, or $\|w^{(g)}\|_g = \sqrt{\sum_{i=1}^{|w^{(g)}|} (w_i^{(g)})^2}$, where $|w^{(g)}|$ is the number of weights in $w^{(g)}$.

Question: Why is this called group "Lasso" if it uses *l*₂-regularization?

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

- The regularization of group Lasso on a set of weights w is given as: $R_g(w) = \sum_{g=1}^{G} ||w^{(g)}||_g$, where g is a group of partial weights in wand G is the total number of groups.
- $\|.\|_g$ is the group Lasso, or $\|w^{(g)}\|_g = \sqrt{\sum_{i=1}^{|w^{(g)}|} (w_i^{(g)})^2}$, where $|w^{(g)}|$ is the number of weights in $w^{(g)}$.

Question: Why is this called group "Lasso" if it uses l_2 -regularization? Answer: l_2 -regularization has all-or-none zero effect!

★週 ▶ ★ 国 ▶ ★ 国 ▶ … 国

2 Related Works

Proposed Structure Sparsity Learning Approach

• SSL for Generic Structures

SSL for Filters and Channels

- SSL for Filter Shapes
- SSL for Layer Depth
- SSL for Computationally Efficient Structures

4 Experimental Results

SSL for Filters and Channels

Suppose $W_{n_l,:,:,:}^{(l)}$ is the n_l -th filter and $W_{:,c_l,:,:}^{(l)}$ is the c_l -th channel of all filters in the *l*-th layer. Then the optimization target is defined as:

$$E(W) = E_D(W) + \lambda_n \sum_{l=1}^{L} \sum_{n_l=1}^{N_l} \|W_{n_l, \dots, \dots}^{(l)}\|_g + \lambda_c \sum_{l=1}^{L} \sum_{(c_l=1)}^{C_l} \|W_{l, c_l, \dots, \dots}^{(l)}\|_g$$

★週 ▶ ★ 注 ▶ ★ 注 ▶

2 Related Works

Proposed Structure Sparsity Learning Approach

- SSL for Generic Structures
- SSL for Filters and Channels
- SSL for Filter Shapes
- SSL for Layer Depth
- SSL for Computationally Efficient Structures

4 Experimental Results

SSL for Filter Shapes

Suppose $W_{:,c_l,m_l,k_l}^{(l)}$ denotes the vector of all corresponding weights of spatial position (m_l, k_l) in the filters across c_l -th channel, then:

$$E(W) = E_D(W) + \lambda_s. \sum_{l=1}^{L} (\sum_{c_l=1}^{C_l} \sum_{m_l=1}^{M_l} \sum_{k_l=1}^{K_l} \|W_{:,c_l,m_l,k_l}^{(l)}\|_g)$$

2 Related Works

Proposed Structure Sparsity Learning Approach

- SSL for Generic Structures
- SSL for Filters and Channels
- SSL for Filter Shapes
- SSL for Layer Depth
- SSL for Computationally Efficient Structures

4 Experimental Results

SSL for Layer Depth

Depth sparsity reduces the computation cost and improves accuracy. The optimization is given as:

$$E(W) = E_D(W) + \lambda_d \cdot \sum_{l=1}^{L} \|W^{(l)}\|_g$$

Zeroing out all filters in a layer can hinder the message passing across layers, and hence shortcut is used to transfer the feature map.

2 Related Works

Proposed Structure Sparsity Learning Approach

- SSL for Generic Structures
- SSL for Filters and Channels
- SSL for Filter Shapes
- SSL for Layer Depth
- SSL for Computationally Efficient Structures

4 Experimental Results

SSL for Computationally Efficient Structures

- **2D-filter-wise sparsity for convolution.** Fine-grain variant of filter-wise sparsity is zeroing out 2D filters instead of 3D filters for efficient computation reduction. Since, 2D filters are smaller groups and hence easy to zero-out.
- Combination of filter-wise and shape-wise sparsity for GEMM. Convolutional operation is represented as a matrix in GEneral Matrix Multiplication (GEMM) such that each row is represented as a feature and each column is a collection of weight corresponding to shape sparsity. Combining filter-wise and shape-wise sparsity zeroes out the rows and columns of the weight matrix and hence reduces the dimensionality.

- Filter-wise, Channel-wise and Shape-wise SSL on LeNet
- SSL on fully-connected MLP
- Filter-wise and Shape-wise SSL on ConvNet
- Depth-wise SSL on ResNet
- SSL on AlexNet

Tuble 1. Results and penalizing animportant inters and enalities in Derter							
LeNet #	Error	Filter # §	Channel # §	FLOP §	Speedup §		
1 (baseline) 2 3	0.9% 0.8% 1.0%	20—50 5—19 3—12	1-20 1-4 1-3	100%—100% 25%—7.6% 15%—3.6%	1.00×—1.00× 1.64×—5.23× 1.99×—7.44×		

Table 1: Results after penalizing unimportant filters and channels in LeNet

[§]In the order of *conv1*—*conv2*

Table 2: Results after learning filter shapes in LeNet

LeNet #	Error	Filter size [§]	Channel #	FLOP	Speedup
1 (baseline)	0.9%	25—500	1—20	100%—100%	$1.00 \times -1.00 \times$
4	0.8%	21—41	1—2	8.4%-8.2%	2.33×—6.93×
5	1.0%	7—14	1—1	1.4%-2.8%	5.19×—10.82×

[§] The sizes of filters after removing zero shape fibers, in the order of *conv1*—*conv2*

Figure 3: Learned conv1 filters in LeNet 1 (top), LeNet 2 (middle) and LeNet 3 (bottom)

・ロト ・聞 ト ・ ヨト ・ ヨト

MLP #	Error	Neuron # per layer §	FLOP per layer §	¹
1 (baseline) 2 3	1.43% 1.34% 1.53%	784–500–300–10 469–294–166–10 434–174–78–10	100%-100%-100% 35.18%-32.54%-55.33% 19.26%-9.05%-26.00%	
§In the order	²⁸ 1 28			
	(b)			

Figure 4: (a) Results of learning the number of neurons in *MLP*. (b) the connection numbers of input neurons (*i.e.* pixels) in *MLP* 2 after SSL.

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

ConvNet #	Error	Row sparsity §	Column sparsity §	Speedup [§]
1 (baseline)	17.9%	12.5%-0%-0%	0%–0%–0%	$\begin{array}{c} 1.00 \times -1.00 \times -1.00 \times \\ 1.43 \times -3.05 \times -1.57 \times \\ 1.25 \times -2.01 \times -1.18 \times \end{array}$
2	17.9%	50.0%-28.1%-1.6%	0%–59.3%–35.1%	
3	16.9%	31.3%-0%-1.6%	0%–42.8%–9.8%	

Table 3: Learning row-wise and column-wise sparsity of ConvNet on CIFAR-10

[§] in the order of *conv1–conv2–conv3*

Figure 5: Learned conv1 filters in ConvNet 1 (top), ConvNet 2 (middle) and ConvNet 3 (bottom)

æ

イロト イポト イヨト イヨト

Figure 6: Error vs. layer number after depth regularization by SSL. *ResNet-#* is the original *ResNet* in [5] with # layers. *SSL-ResNet-#* is the depth-regularized *ResNet* by SSL with # layers, including the last fully-connected layer. 32×32 indicates the convolutional layers with an output map size of 32×32 , and so forth.

< 一型

э

AlexNet

#	Method	Top1 err.	Statistics	conv1	conv2	conv3	conv4	conv5
1	ℓ_1	44.67%	sparsity CPU × GPU ×	67.6% 0.80 0.25	92.4% 2.91 0.52	97.2% 4.84 1.38	96.6% 3.83 1.04	94.3% 2.76 1.36
2	SSL	44.66%	column sparsity row sparsity CPU × GPU ×	0.0% 9.4% 1.05 1.00	63.2% 12.9% 3.37 2.37	76.9% 40.6% 6.27 4.94	84.7% 46.9% 9.73 4.03	80.7% 0.0% 4.93 3.05
3	pruning[7]	42.80%	sparsity	16.0%	62.0%	65.0%	63.0%	63.0%
4	ℓ_1	42.51%	sparsity CPU × GPU ×	14.7% 0.34 0.08	76.2% 0.99 0.17	85.3% 1.30 0.42	81.5% 1.10 0.30	76.3% 0.93 0.32
5	SSL	42.53%	$\begin{array}{c} \text{column sparsity} \\ \text{CPU} \times \\ \text{GPU} \times \end{array}$	0.00% 1.00 1.00	20.9% 1.27 1.25	39.7% 1.64 1.63	39.7% 1.68 1.72	24.6% 1.32 1.36

Table 4: Sparsity and speedup of AlexNet on ILSVRC 2012

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

- Filter-wise, channel-wise, shape-wise and depth-wise SSL
- Dynamic compact structure learning without loss of accuracy
- Significant speed-ups with both CPUs and GPUs

くほと くほと くほと