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Introduction

Problem: Deployment of large-scale deep learning model is
computationally expensive

Solution: Occam’s Razor - Simple is better!
Remove or zero-out the non-essential weights / layers of the model

Catch: Trade-off between model complexity and accuracy
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Related Works

Connection pruning and weight sparsifying. Connection pruning
removes unwanted weight connections from the fully connected layers
of a CNN. Not much beneficial for convolutional layers!
Hard-coding sparse weights for convolutional layers introduces
non-structured sparsity with slight accuracy loss.
- This work achieves structured sparsity in adjacent memory space

Low rank approximation. LRA compresses the deep network by
decomposing the weight matrix W ∈ Ru×v at every layer into product
of two matrices U ∈ Ru×α and V ∈ Rα×v , where α < u, v .
- This work dynamically optimizes the model and obtains lower rank
approximation

Model structure learning. Group Lasso has been used for structure
sparsity in deep models to learn the appropriate number of filters or
filter shapes.
- This work applies group Lasso at various levels of the deep model
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Structure Sparsity Learning for Generic Structures

Consider the weights of a deep network as a 4-D tensor:
W (l) ∈ RNl×Cl×Ml×Kl , where Nl , Cl , Ml and Kl are the dimensions of the
l-th layer (1 ≤ l ≤ L) weight tensor along the axes of filter, channel,
spatial height and spatial width. L denotes the number of convolutional
layers. Then the proposed generic optimization is:

E (W ) = ED(W ) + λ.R(W ) + λg .

L∑
l=1

Rg (W (l))

ED(W ) is the loss on data, R(.) is the non-structured regularizer, like
l2-norm, and Rg (.) is the structured regularizer. This work uses group
Lasso for Rg (.).
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Group Lasso

The regularization of group Lasso on a set of weights w is given as:
Rg (w) =

∑G
g=1 ‖w (g)‖g , where g is a group of partial weights in w

and G is the total number of groups.

‖.‖g is the group Lasso, or ‖w (g)‖g =

√∑|w (g)|
i=1 (w

(g)
i )2, where |w (g)|

is the number of weights in w (g).

Question: Why is this called group “Lasso” if it uses l2-regularization?
Answer: l2-regularization has all-or-none zero effect!
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SSL for Filters and Channels

Suppose W
(l)
nl ,:,:,: is the nl -th filter and W

(l)
:,cl ,:,: is the cl -th channel of all

filters in the l-th layer. Then the optimization target is defined as:

E (W ) = ED(W ) + λn.

L∑
l=1

(

Nl∑
nl=1

‖W (l)
nl ,:,:,:‖g ) + λc .

L∑
l=1

(

Cl∑
cl=1

‖W (l)
:,cl ,:,:‖g )
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SSL for Filter Shapes

Suppose W
(l)
:,cl ,ml ,kl

denotes the vector of all corresponding weights of
spatial position (ml , kl) in the filters across cl -th channel, then:

E (W ) = ED(W ) + λs .

L∑
l=1

(

Cl∑
cl=1

Ml∑
ml=1

Kl∑
kl=1

‖W (l)
:,cl ,ml ,kl

‖g )
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SSL for Layer Depth

Depth sparsity reduces the computation cost and improves accuracy. The
optimization is given as:

E (W ) = ED(W ) + λd .

L∑
l=1

‖W (l)‖g

Zeroing out all filters in a layer can hinder the message passing across
layers, and hence shortcut is used to transfer the feature map.
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SSL for Computationally Efficient Structures

2D-filter-wise sparsity for convolution. Fine-grain variant of
filter-wise sparsity is zeroing out 2D filters instead of 3D filters for
efficient computation reduction. Since, 2D filters are smaller groups
and hence easy to zero-out.

Combination of filter-wise and shape-wise sparsity for GEMM.
Convolutional operation is represented as a matrix in GEneral Matrix
Multiplication (GEMM) such that each row is represented as a feature
and each column is a collection of weight corresponding to shape
sparsity. Combining filter-wise and shape-wise sparsity zeroes out the
rows and columns of the weight matrix and hence reduces the
dimensionality.
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Experimental Results

Filter-wise, Channel-wise and Shape-wise SSL on LeNet

SSL on fully-connected MLP

Filter-wise and Shape-wise SSL on ConvNet

Depth-wise SSL on ResNet

SSL on AlexNet
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LeNet
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MLP
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ConvNet
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ResNet
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AlexNet
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Summary

Filter-wise, channel-wise, shape-wise and depth-wise SSL

Dynamic compact structure learning without loss of accuracy

Significant speed-ups with both CPUs and GPUs
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