Learning the Number of Neurons in Deep Networks

Jose M. Alvarez¹ Mathieu Salzmanno²

¹Data61 @ CSIRO, Canberra, ACT 2601, Australia

²CVLab, EPFL,CH-1015 Lausanne, Switzerland

NIPS,2016 Presenter: Arshdeep Sekhon

- Designing a deep NN architecture
- Configure: number of layers
 - number of units
- Image: Market Market
- A have redundant parameters

- Incrementally add layers/parameters
- Ø But Shallow networks are less expressive
- Solution back and the second state of the s

- Very Deep networks more expressive
- 2 Start from very deep networks, eliminate redundant parameters
- Ocheck influence of every parameter
- If or example, check network Hessian wrt every parameter in an over complete network
- onot scalable to large networks

- Automatically get number of neurons for each layer
- 2 cancel effects of individual neurons
- jointly as we learn
- o preprocessing

- Start with an overcomplete network
- Pind neurons for each layer
- A general deep network:
 L layers in network architecture
 N_I neurons in each layer
- weights $\Theta = [\theta_l, b_l]$ for layer $I \ \theta_l = [\theta_l^n] \ 1 \le l \le L$ and $1 \le n \le N_l$
- The optimization problem:

$$\min_{\Theta} \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(x_i, \Theta)) + r(\Theta)$$
(1)

Model Selection: Regularizer

• The optimization problem:

$$\min_{\Theta} \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(x_i, \Theta)) + r(\Theta)$$
(2)

② Goal: Cancel entire neurons

・ 何 ト ・ ヨ ト ・ ヨ ト

• The optimization problem:

$$\min_{\Theta} \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(x_i, \Theta)) + r(\Theta)$$
(2)

- Goal: Cancel entire neurons
- traditional regularizers: ℓ_1 or ℓ_2
- Gannot cancel entire neurons because they control weights individually.

The optimization problem:

$$\min_{\Theta} \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(x_i, \Theta)) + r(\Theta)$$
(2)

- Goal: Cancel entire neurons
- traditional regularizers: ℓ_1 or ℓ_2
- Gannot cancel entire neurons because they control weights individually.
- Neurons are groups of parameters
- weights $\Theta = [\theta_I, b_I]$ for layer $I \ \theta_I = [\theta_I^n] \ 1 \le I \le L$ and $1 \le n \le N_I$

・聞き ・ヨキ ・ヨキ 三原

The optimization problem:

$$\min_{\Theta} \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(x_i, \Theta)) + r(\Theta)$$
(2)

- Goal: Cancel entire neurons
- traditional regularizers: ℓ_1 or ℓ_2
- Gannot cancel entire neurons because they control weights individually.
- Neurons are groups of parameters
- **(**) weights $\Theta = [\theta_l, b_l]$ for layer $I \ \theta_l = [\theta_l^n] \ 1 \le l \le L$ and $1 \le n \le N_l$
- O Use new regularizer: group sparsity

過き イヨト イヨト 三日

- Parameters associated with a neuron are grouped together
- Penalty on groups of weights instead of individual weights
- **()** parameters of each neuron in layer *I* are grouped in a vector of size P_I
- O New regularizer:

$$\mathbf{r}(\Theta) = \sum_{l=1}^{L} \lambda_l \sqrt{P_l} \sum_{n=1}^{N_l} ||\theta_n^l||_2$$
(3)

- θ_l^n are the parameters for neuron n in layer l
- **(**) ℓ_2 norm followed by ℓ_1 norm
- λ_l sets the influence of the penalty.

But does not lead to sparsity within a group

$$r(\Theta) = \sum_{l=1}^{L} (1-\alpha)\lambda_l \sqrt{P_l} \sum_{n=1}^{N_l} ||\theta_n^l||_2 + \alpha \lambda_\ell ||\theta_\ell||_1$$
(4)

e more general penalty that leads to sparsity both at and within group level.

伺下 イヨト イヨト

Training: Proximal Gradient Descent

minimize
$$f(x) = g(x) + h(x)$$
 (5)

proximal gradient algorithm:

$$x^{k+1} = \mathbf{prox}_{t_k h} \Big(x^{k-1} - t_k (\nabla g(x^{k-1})) \Big)$$
(6)

proximal operator:

$$\mathbf{prox}_{h}(x) = \arg\min_{u} h(u) + \frac{1}{2} ||x - u||_{2}^{2}$$
(7)

$$x^{k+1} = \arg\min_{u} \left(h(u) + \frac{1}{2t} ||u - x^{k-1} + t_k(\nabla g(x^{k-1}))||_2^2 \right)$$
(8)

★掃♪ ★注♪ ★注♪

The objective:

2

$$\min_{\Theta} \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(x_i, \Theta)) + r(\Theta)$$
(9)

$$r(\Theta) = \sum_{l=1}^{L} (1-\alpha)\lambda_l \sqrt{P_l} \sum_{n=1}^{N_l} ||\theta_n^l||_2 + \alpha \lambda_\ell ||\theta_\ell||_1$$
(10)

Ioss function is g(x) and regularizer h(x) in proximal gradient algorithm

▲圖▶ ▲ 国▶ ▲ 国▶ …

Training: Proximal Gradient Descent

2

Update: Take gradient of loss and apply proximal operator of the regularizer

$$\tilde{\theta}_{l}^{n} = \arg\min_{\tilde{\theta}_{l}^{n}} \frac{1}{2t} ||\tilde{\theta}_{l}^{n} - \hat{\theta}_{l}^{n}||_{2}^{2} + r(\Theta)$$
(11)

where \$\hlowsymbol{\hlowsymbol{\eta}}_l\$ is update by gradient of loss function
This has a closed form solution:

$$\tilde{\theta}_l^n = \left(1 - \frac{t(1-\alpha)\lambda_l\sqrt{P_l}}{||S(\hat{\theta}_l^n, t\alpha\lambda_l)||_2)}\right)_+ S(\hat{\theta}_l^n, t\alpha\lambda_l)$$

$$(S(\mathbf{z},\tau))_j = sign(z_j)(|\mathbf{z}_j|-\tau)_+$$

伺下 イヨト イヨト

- Dataset: ImageNet , Places2-401
- Oddels:
 - VGG-B Net:10 convolutional layers followed by three fully-connected layers
 - DecomposeMe₈ (Dec₈): 16 Conv layers with 1D kernels

・ 同 ト ・ 三 ト ・ 三 ト

Experiments and Model Architectures

Model	Top-1 acc. (%)		
DN		Model	Top-1 acc. (%)
BNet	62.5	Ours-Bnet ^C	62.7
BNet ^C	61.1	Ours Dag	64.9
ResNet50 ^a [He et al., 2015]	67.3	Ours-Dec _{8-GS}	04.0
Deca	64.8	Ours-Dec ₈ -640 _{SGL}	67.5
Decs	66.0	Ours-Dec ₈ -640 _{GS}	68.6
Dec ₈ -640	66.9	Ours-Dece-768 ge	68.0
Dec ₈ -768	68.1	0415 2008 70063	00.0

Table 1: Top-1 accuracy results for several state-of-the art architectures and our method on ImageNet.

^a Trained over 55 epochs using a batch size of 128 on two TitanX with code publicly available.

BNet ^C on ImageNet (in %)		
	GS	
neurons	12.70	
group param	13.59	
total param	13.59	
total induced	27.38	
accuracy gap	1.6	

(日) (同) (三) (三)

Figure 1: Parameter reduction on ImageNet using BNet^C. (Left) Comparison of the number of neurons per layer of the original network with that obtained using our approach. (Right) Percentage of zeroed-out neurons and parameters, and accuracy gap between our network and the original one. Note that we outperform the original network while requiring much fewer parameters.