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Motivation

@ Designing a deep NN architecture
@ Configure:

number of layers
number of units

© mostly hand-designed
@ have redundant parameters
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Automatic Model Selection: Constructive Approaches

@ Incrementally add layers/parameters
@ But Shallow networks are less expressive

© bad initialization when incrementally adding layers
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Automatic Model Selection: Destructive Approaches

Very Deep networks more expressive
Start from very deep networks, eliminate redundant parameters
check influence of every parameter

for example, check network Hessian wrt every parameter in an over
complete network

not scalable to large networks

Jose M. Alvarez, Mathieu Salzmanno (CVLalearning the Number of Neurons in Deep Net



Automatic Model Selection

© Automatically get number of neurons for each layer
@ cancel effects of individual neurons
© jointly as we learn

© no preprocessing
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Model Selection

@ Start with an overcomplete network
@ Find neurons for each layer

© A general deep network:
L layers in network architecture
N, neurons in each layer

Q weights © = [0, b)) for layer I 0, =[0]] 1 </ < Land 1< n<N,
© The optimization problem:

N
mein%ZE(y;, f(xi,©)) + r(©) (1)
i=1
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Model Selection: Regularizer

© The optimization problem:

N
mein % Zﬁ(yi, f(x;,©))+ r(©) (2)
i=1

@ Goal: Cancel entire neurons
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Model Selection: Regularizer

© The optimization problem:

N
mein % Zé(yi, f(x;,©))+ r(©) (2)
i=1

@ Goal: Cancel entire neurons
© traditional regularizers: ¢1 or /5

@ cannot cancel entire neurons because they control weights individually.
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Model Selection: Regularizer

© The optimization problem:
1 N
melnNglé(y,-,f(x,-,@))—l- r(©) (2)

@ Goal: Cancel entire neurons

© traditional regularizers: ¢1 or /5

@ cannot cancel entire neurons because they control weights individually.
© Neurons are groups of parameters

@ weights © = [0, b] for layer | 0, =[0]] 1 </ < Land 1< n<N,
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Model Selection: Regularizer

© The optimization problem:

N
mein % Zé(yi, f(x;,©))+ r(©) (2)
i=1

Goal: Cancel entire neurons

traditional regularizers: ¢1 or ¢

cannot cancel entire neurons because they control weights individually.
Neurons are groups of parameters

weights © = [0, by] for layer | ) =[0]] 1</ <Land 1 <n<N,

Use new regularizer: group sparsity

©0 00600
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Model Selection: Group Sparsity

© Parameters associated with a neuron are grouped together
@ Penalty on groups of weights instead of individual weights
© parameters of each neuron in layer | are grouped in a vector of size P,

© New regularizer:

L Ny
r(©)=> " MVP 1162 (3)
=1 n=1

© 0] are the parameters for neuron n in layer |
@ /5 norm followed by ¢; norm
@ )\ sets the influence of the penalty.
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Model Selection: Group Sparsity

© But does not lead to sparsity within a group

L N,
r(©) =Y (1= a)\/Pr Y 11042+ adel|felx (4)
I=1 n=1

@ more general penalty that leads to sparsity both at and within group
level.
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Training: Proximal Gradient Descent

minimize f(x) = g(x) + h(x) (5)

proximal gradient algorithm:

KL = prox, , (x¥7L — t(Ve(x*))) (6)

© proximal operator:

1
prox,(x) = arg min h(u) + §Hx —ul3 (7)

. 1 - -
X = argmin (h(u) + 5 [lu =+ 6(VE(E)IB)  (®)
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Training: Proximal Gradient Descent

© The objective:

N
min % > 0, (. ©)) + 1(©) ©)
i=1

L N,
r(©) =3 (1= a)A/Pr Y 110h]]12 + ael0l1 (10)
=1 n=1

@ loss function is g(x) and regularizer h(x) in proximal gradient
algorithm

Jose M. Alvarez, Mathieu Salzmanno (CVLalearning the Number of Neurons in Deep Net



Training: Proximal Gradient Descent

© Update: Take gradient of loss and apply proximal operator of the
regularizer

° 1
67 = argmin 167 — 7|3 + (©) (11)
0"’,, 2t
where 6’7’ is update by gradient of loss function

© This has a closed form solution:

9~n (1 t(l — (k))\[\/ Pl
l - - ~
||‘S(6l ’ta)\l)”Q)

) S0 taN)
+

(5(z,7)); = sign(z)(Izj| — )+
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Experiments and Model Architectures

@ Dataset: ImageNet , Places2-401
@ Models:
©® VGG-B Net:10 convolutional layers followed by three fully-connected

layers
® DecomposeMeg (Decg): 16 Conv layers with 1D kernels
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Experiments and Model Architectures

Table 1: Top-1 accuracy results for several state-of-the art architectures and our method on ImageNet.

Model Top-T acc. (%
‘ = ode [ Top: GZC;: %) | Model Top-1 acc. (%)
ot - Ours-Bnet& g 62.7
EN?I S0 (Ho et ol 2015 g;; Ours-Decs_cs 64.8
Des et50” [He et al., ] 64.8 Ours-Decg-6405¢1, 67.5
Dng - s Ours-Decg-640¢5 68.6
eCs- . -Decg-
Dees a0 cs1 Ours-Decs-768¢s 68.0

“ Trained over 55 epochs‘ using a batch size of 128 on two TitanX with code publicly available.

g e | BNet® on ImageNet (in %) |

% DENE( ows GS

% 266 neurons 12.70

3 group param 13.59

E 128 total param 13.59

= 3|_| n n ﬂ H total induced 27.38
NN accuracy gap 16

Figure 1: Parameter reduction on ImageNet using BNetC. (Left) Comparison of the number of
neurons per layer of the original network with that obtained using our approach. (Right) Percentage
of zeroed-out neurons and parameters, and accuracy gap between our network and the original one.
Note that we outperform the original network while requiring much fewer parameters.
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