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Motivation

1 Designing a deep NN architecture
2 Configure:

number of layers
number of units

3 mostly hand-designed

4 have redundant parameters
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Automatic Model Selection: Constructive Approaches

1 Incrementally add layers/parameters

2 But Shallow networks are less expressive

3 bad initialization when incrementally adding layers
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Automatic Model Selection: Destructive Approaches

1 Very Deep networks more expressive

2 Start from very deep networks, eliminate redundant parameters

3 check influence of every parameter

4 for example, check network Hessian wrt every parameter in an over
complete network

5 not scalable to large networks
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Automatic Model Selection

1 Automatically get number of neurons for each layer

2 cancel effects of individual neurons

3 jointly as we learn

4 no preprocessing
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Model Selection

1 Start with an overcomplete network

2 Find neurons for each layer

3 A general deep network:
L layers in network architecture
Nl neurons in each layer

4 weights Θ = [θl , bl ] for layer l θl = [θnl ] 1 ≤ l ≤ L and 1 ≤ n ≤ Nl

5 The optimization problem:

min
Θ

1

N

N∑
i=1

`(yi , f (xi ,Θ)) + r(Θ) (1)
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Model Selection: Regularizer

1 The optimization problem:

min
Θ

1

N

N∑
i=1

`(yi , f (xi ,Θ)) + r(Θ) (2)

2 Goal: Cancel entire neurons

3 traditional regularizers: `1 or `2

4 cannot cancel entire neurons because they control weights individually.

5 Neurons are groups of parameters

6 weights Θ = [θl , bl ] for layer l θl = [θnl ] 1 ≤ l ≤ L and 1 ≤ n ≤ Nl

7 Use new regularizer: group sparsity
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Model Selection: Group Sparsity

1 Parameters associated with a neuron are grouped together

2 Penalty on groups of weights instead of individual weights

3 parameters of each neuron in layer l are grouped in a vector of size Pl

4 New regularizer:

r(Θ) =
L∑

l=1

λl
√
Pl

Nl∑
n=1

||θln||2 (3)

5 θnl are the parameters for neuron n in layer l

6 `2 norm followed by `1 norm

7 λl sets the influence of the penalty.
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Model Selection: Group Sparsity

1 But does not lead to sparsity within a group

r(Θ) =
L∑

l=1

(1− α)λl
√
Pl

Nl∑
n=1

||θln||2 + αλ`||θ`||1 (4)

2 more general penalty that leads to sparsity both at and within group
level.
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Training: Proximal Gradient Descent

minimize f (x) = g(x) + h(x) (5)

proximal gradient algorithm:

xk+1 = proxtkh

(
xk−1 − tk(∇g(xk−1))

)
(6)

1 proximal operator:

proxh(x) = arg min
u

h(u) +
1

2
||x − u||22 (7)

2

xk+1 = arg min
u

(
h(u) +

1

2t
||u − xk−1 + tk(∇g(xk−1))||22

)
(8)
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Training: Proximal Gradient Descent

1 The objective:

min
Θ

1

N

N∑
i=1

`(yi , f (xi ,Θ)) + r(Θ) (9)

2

r(Θ) =
L∑

l=1

(1− α)λl
√
Pl

Nl∑
n=1

||θln||2 + αλ`||θ`||1 (10)

3 loss function is g(x) and regularizer h(x) in proximal gradient
algorithm
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Training: Proximal Gradient Descent

1 Update:Take gradient of loss and apply proximal operator of the
regularizer

2

θ̃nl = arg min
θ̃nl

1

2t
||θ̃nl − θ̂nl ||

2
2 + r(Θ) (11)

where θ̂nl is update by gradient of loss function

3 This has a closed form solution:

(S(z, τ))j = sign(zj)(|zj | − τ)+
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Experiments and Model Architectures

1 Dataset: ImageNet , Places2-401
2 Models:

1 VGG-B Net:10 convolutional layers followed by three fully-connected
layers

2 DecomposeMe8 (Dec8): 16 Conv layers with 1D kernels
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