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Motivation

Randomized features computationally efficient for approximating
kernels.

Existing methods require a user defined kernel.

Weakness: Poor choice of user defined kernel can lead to a useless
model.

Goal: Combine kernel learning with randomization.

Idea: Exploit computational advantage of randomized features for
supervised kernel learning.
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Kernel

K (xi , xj) =< φ(xi ), φ(xj) > (1)
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Random Features for Kernel [Rahimi and Recht, NIPS ’07 ]

K (x , y) =< φ(x), φ(y) >= z(x)′z(y) (2)
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Kernel Learning

Heuristic rules to combine kernels

Optimize structured compositions of kernels w.r.t an alignment metric
[Elaborate]

Jointly optimize kernel composition with empirical risk
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Work-flow

Create randomized features

Solve an optimization problem to select a subset

Train a model with the optimized features

Learn lower dimensional models than original random-feature
approach
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Formulation

For binary classification: given n data points (x i , y i ) ∈ Rd × {−1, 1}.
Let φ : Rd ×W → [−1, 1] and Q be a probability measure on a space
W, a kernel can be defined as:

KQ(x , x ′) :=

∫
φ(x ,w)φ(x ′,w)dQ(w) (3)

Find the ”best” kernel KQ over all distributions Q in some set P of
possible distributions on random features

maximizeQ∈P
∑
i ,j

KQ(x i , x j)y iy j (4)

Given some base (user defined) distribution P0, Consider collections
P := {Q : Df (Q||P0 ≤ ρ)}, where ρ > 0 is a specified constant.
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Formulation contd.

Using randomized feature approach, approximate integral (3) as
discrete sum over samples W i ∼ P0, i ∈ [Nw ]

Approximate to P : PNw := {q : Df (q||1/Nw ) ≤ ρ}
Problem (4) becomes:

maximizeq∈PNw

∑
i ,j

y iy j
Nw∑
m=1

qmφ(x i ,wm)φ(x j ,wm) (5)
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Formulation contd.

Given a solution q̂, two ways to solve learning problem:

Draw D samples W 1, . . . ,W d ∼ q̂ defining features
φi = [φ(x i ,w1) . . . φ(x i ,wD)]T and solve :

θ̂ = argminθ{
n∑

i=1

c

(
1√
D
θTφi , y i

)
+ r(θ)} (6)

Set φi = [φ(x i ,w1) . . . φ(x i ,wNw )]T (original random samples from
P0) and directly solve:

θ̂ = argminθ{
n∑

i=1

c

(
θTdiag(q̂)1/2φi , y i

)
+ r(θ)} (7)

This is a two step approach

Aman Sinha, John Duchi (Stanford University) Learning Kernels with Random Features
NIPS, 2016 Presenter: Ritambhara Singh 15

/ 24



Formulation contd.

Given a solution q̂, two ways to solve learning problem:

Draw D samples W 1, . . . ,W d ∼ q̂ defining features
φi = [φ(x i ,w1) . . . φ(x i ,wD)]T and solve :

θ̂ = argminθ{
n∑

i=1

c

(
1√
D
θTφi , y i

)
+ r(θ)} (6)

Set φi = [φ(x i ,w1) . . . φ(x i ,wNw )]T (original random samples from
P0) and directly solve:

θ̂ = argminθ{
n∑

i=1

c

(
θTdiag(q̂)1/2φi , y i

)
+ r(θ)} (7)

This is a two step approach

Aman Sinha, John Duchi (Stanford University) Learning Kernels with Random Features
NIPS, 2016 Presenter: Ritambhara Singh 15

/ 24



Formulation contd.

Given a solution q̂, two ways to solve learning problem:

Draw D samples W 1, . . . ,W d ∼ q̂ defining features
φi = [φ(x i ,w1) . . . φ(x i ,wD)]T and solve :

θ̂ = argminθ{
n∑

i=1

c

(
1√
D
θTφi , y i

)
+ r(θ)} (6)

Set φi = [φ(x i ,w1) . . . φ(x i ,wNw )]T (original random samples from
P0) and directly solve:

θ̂ = argminθ{
n∑

i=1

c

(
θTdiag(q̂)1/2φi , y i

)
+ r(θ)} (7)

This is a two step approach

Aman Sinha, John Duchi (Stanford University) Learning Kernels with Random Features
NIPS, 2016 Presenter: Ritambhara Singh 15

/ 24



Outline

1 Introduction
Motivation
Background
State-of-the-art

2 Proposed Approach
Work-flow
Formulation
Efficient solution

3 Evaluation
Learning a kernel
Feature Selection
Benchmark Datasets

Aman Sinha, John Duchi (Stanford University) Learning Kernels with Random Features
NIPS, 2016 Presenter: Ritambhara Singh 16

/ 24



Efficient solution

Re-write the optimization problem in (5) as:

qT ((φy) ◦ (φy)) (8)

Also solve (5) via bisection over dual variable λ. Using λ ≥ 0 for
constraint Df (Q||P0) ≤ ρ, partial Lagrangian is:

L(q, λ) = qT ((φy) ◦ (φy))− λ(Df (q||1/Nw )− ρ) (9)

Consistency: Solution to problem (5) approaches a population
optimum as data and random sampling increases.

Generalization: Class of estimators used has strong performance
guarantees.

Aman Sinha, John Duchi (Stanford University) Learning Kernels with Random Features
NIPS, 2016 Presenter: Ritambhara Singh 17

/ 24



Efficient solution

Re-write the optimization problem in (5) as:

qT ((φy) ◦ (φy)) (8)

Also solve (5) via bisection over dual variable λ. Using λ ≥ 0 for
constraint Df (Q||P0) ≤ ρ, partial Lagrangian is:

L(q, λ) = qT ((φy) ◦ (φy))− λ(Df (q||1/Nw )− ρ) (9)

Consistency: Solution to problem (5) approaches a population
optimum as data and random sampling increases.

Generalization: Class of estimators used has strong performance
guarantees.

Aman Sinha, John Duchi (Stanford University) Learning Kernels with Random Features
NIPS, 2016 Presenter: Ritambhara Singh 17

/ 24



Efficient solution

Re-write the optimization problem in (5) as:

qT ((φy) ◦ (φy)) (8)

Also solve (5) via bisection over dual variable λ. Using λ ≥ 0 for
constraint Df (Q||P0) ≤ ρ, partial Lagrangian is:

L(q, λ) = qT ((φy) ◦ (φy))− λ(Df (q||1/Nw )− ρ) (9)

Consistency: Solution to problem (5) approaches a population
optimum as data and random sampling increases.

Generalization: Class of estimators used has strong performance
guarantees.

Aman Sinha, John Duchi (Stanford University) Learning Kernels with Random Features
NIPS, 2016 Presenter: Ritambhara Singh 17

/ 24



Outline

1 Introduction
Motivation
Background
State-of-the-art

2 Proposed Approach
Work-flow
Formulation
Efficient solution

3 Evaluation
Learning a kernel
Feature Selection
Benchmark Datasets

Aman Sinha, John Duchi (Stanford University) Learning Kernels with Random Features
NIPS, 2016 Presenter: Ritambhara Singh 18

/ 24



Learning a kernel
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Feature Selection
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Benchmark Datasets
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Summary

Learn a kernel in a supervised manner using random features.

Demonstrate consistency and generalization of the method.

Attain competitive results on benchmark datasets with a fraction of
training time.

Future Direction

Usefulness of simple optimization methods on random features in
speeding up traditionally expensive learning problems.
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