Learning Kernels with Random Features

Aman Sinha John Duchi

Stanford University

NIPS, 2016 Presenter: Ritambhara Singh

・ロト ・聞ト ・ ヨト ・ ヨト

Introduction

- Motivation
- Background
- State-of-the-art

2 Proposed Approach

- Work-flow
- Formulation
- Efficient solution

3 Evaluation

- Learning a kernel
- Feature Selection
- Benchmark Datasets

Motivation

- Background
- State-of-the-art

Proposed Approach

- Work-flow
- Formulation
- Efficient solution

B Evaluation

- Learning a kernel
- Feature Selection
- Benchmark Datasets

• Randomized features computationally efficient for approximating kernels.

æ

<ロ> (日) (日) (日) (日) (日)

- Randomized features computationally efficient for approximating kernels.
- Existing methods require a user defined kernel.

・ロン ・聞と ・ヨン ・ヨン

- Randomized features computationally efficient for approximating kernels.
- Existing methods require a user defined kernel.
- Weakness: Poor choice of user defined kernel can lead to a useless model.

くほと くほと くほと

- Randomized features computationally efficient for approximating kernels.
- Existing methods require a user defined kernel.
- Weakness: Poor choice of user defined kernel can lead to a useless model.
- Goal: Combine kernel learning with randomization.

・ 同 ト ・ 三 ト ・ 三 ト

- Randomized features computationally efficient for approximating kernels.
- Existing methods require a user defined kernel.
- Weakness: Poor choice of user defined kernel can lead to a useless model.
- Goal: Combine kernel learning with randomization.
- Idea: Exploit computational advantage of randomized features for supervised kernel learning.

過 ト イヨ ト イヨト

Introduction

Motivation

Background

State-of-the-art

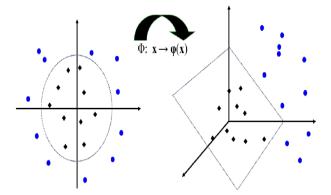
Proposed Approach

- Work-flow
- Formulation
- Efficient solution

B Evaluation

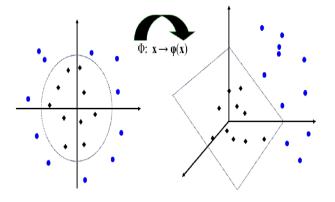
- Learning a kernel
- Feature Selection
- Benchmark Datasets

Kernel



イロト イポト イヨト イヨト 二日

Kernel



$$K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$
(1)

イロト イポト イヨト イヨト 二日

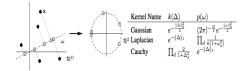
Random Features for Kernel [Rahimi and Recht, NIPS '07]

$$K(x,y) = \langle \phi(x), \phi(y) \rangle = z(x)'z(y) \tag{2}$$

(日) (同) (三) (三)

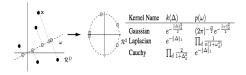
Random Features for Kernel [Rahimi and Recht, NIPS '07]

$$K(x,y) = \langle \phi(x), \phi(y) \rangle = z(x)'z(y) \tag{2}$$



Random Features for Kernel [Rahimi and Recht, NIPS '07]

$$K(x,y) = \langle \phi(x), \phi(y) \rangle = z(x)'z(y) \tag{2}$$



Algorithm 1 Random Fourier Features.

Require: A positive definite shift-invariant kernel $k(\mathbf{x}, \mathbf{y}) = k(\mathbf{x} - \mathbf{y})$. **Ensure:** A randomized feature map $\mathbf{z}(\mathbf{x}) : \mathcal{R}^d \to \mathcal{R}^D$ so that $\mathbf{z}(\mathbf{x})'\mathbf{z}(\mathbf{y}) \approx k(\mathbf{x} - \mathbf{y})$. Compute the Fourier transform p of the kernel $k: p(\omega) = \frac{1}{2\pi} \int e^{-j\omega'\delta} k(\delta) \ d\Delta$. Draw D iid samples $\omega_1, \dots, \omega_D \in \mathcal{R}^d$ from p and D iid samples $b_1, \dots, b_D \in \mathcal{R}$ from the uniform distribution on $[0, 2\pi]$. Let $\mathbf{z}(\mathbf{x}) \equiv \sqrt{\frac{2}{D}} [\cos(\omega_1'\mathbf{x}+b_1) \cdots \cos(\omega_D'\mathbf{x}+b_D)]'$.

Introduction

- Motivation
- Background
- State-of-the-art

Proposed Approach

- Work-flow
- Formulation
- Efficient solution

B Evaluation

- Learning a kernel
- Feature Selection
- Benchmark Datasets

- Heuristic rules to combine kernels
- Optimize structured compositions of kernels w.r.t an alignment metric [Elaborate]
- Jointly optimize kernel composition with empirical risk

▲■ ▶ ▲ 国 ▶ ▲ 国 ▶

Introductior

- Motivation
- Background
- State-of-the-art

Proposed Approach

- Work-flow
- Formulation
- Efficient solution

B Evaluation

- Learning a kernel
- Feature Selection
- Benchmark Datasets

- Create randomized features
- Solve an optimization problem to select a subset
- Train a model with the optimized features
- Learn lower dimensional models than original random-feature approach

- 4 週 ト - 4 三 ト - 4 三 ト

Introductior

- Motivation
- Background
- State-of-the-art

2 Proposed Approach

- Work-flow
- Formulation
- Efficient solution

B) Evaluation

- Learning a kernel
- Feature Selection
- Benchmark Datasets

Formulation

• For binary classification: given *n* data points $(x^i, y^i) \in \mathbb{R}^d \times \{-1, 1\}$. Let $\phi : \mathbb{R}^d \times \mathcal{W} \to [-1, 1]$ and Q be a probability measure on a space \mathcal{W} , a kernel can be defined as:

$$K_Q(x,x') := \int \phi(x,w)\phi(x',w)dQ(w) \tag{3}$$

Formulation

 For binary classification: given n data points (xⁱ, yⁱ) ∈ R^d × {−1, 1}. Let φ : R^d × W → [−1, 1] and Q be a probability measure on a space W, a kernel can be defined as:

$$K_Q(x,x') := \int \phi(x,w)\phi(x',w)dQ(w) \tag{3}$$

• Find the "best" kernel K_Q over all distributions Q in some set \mathcal{P} of possible distributions on random features

$$maximize_{Q\in\mathcal{P}}\sum_{i,j}K_Q(x^i,x^j)y^iy^j$$
(4)

くぼう くほう くほう

Formulation

 For binary classification: given n data points (xⁱ, yⁱ) ∈ R^d × {−1, 1}. Let φ : R^d × W → [−1, 1] and Q be a probability measure on a space W, a kernel can be defined as:

$$K_Q(x,x') := \int \phi(x,w)\phi(x',w)dQ(w) \tag{3}$$

• Find the "best" kernel K_Q over all distributions Q in some set \mathcal{P} of possible distributions on random features

$$maximize_{Q\in\mathcal{P}}\sum_{i,j}K_Q(x^i,x^j)y^iy^j$$
(4)

• Given some base (user defined) distribution P_0 , Consider collections $\mathcal{P} := \{Q : D_f(Q || P_0 \le \rho)\}$, where $\rho > 0$ is a specified constant.

- Using randomized feature approach, approximate integral (3) as discrete sum over samples Wⁱ ∼ P₀, i ∈ [N_w]
- Approximate to $\mathcal{P}:\mathcal{P}_{N_w}:=\{q:D_f(q||1/N_w)\leq \rho\}$
- Problem (4) becomes:

$$maximize_{q \in \mathcal{P}_{N_w}} \sum_{i,j} y^i y^j \sum_{m=1}^{N_w} q_m \phi(x^i, w^m) \phi(x^j, w^m)$$
(5)

- 4個 ト 4 ヨ ト 4 ヨ ト 三 ヨ

Formulation contd.

- Given a solution \hat{q} , two ways to solve learning problem:
- Draw *D* samples $W^1, \ldots, W^d \sim \hat{q}$ defining features $\phi^i = [\phi(x^i, w^1) \ldots \phi(x^i, w^D)]^T$ and solve :

$$\hat{\theta} = \operatorname{argmin}_{\theta} \{ \sum_{i=1}^{n} c \left(\frac{1}{\sqrt{D}} \theta^{T} \phi^{i}, y^{i} \right) + r(\theta) \}$$
(6)

ロトメポトメモトメモト・モ

Formulation contd.

- Given a solution \hat{q} , two ways to solve learning problem:
- Draw *D* samples $W^1, \ldots, W^d \sim \hat{q}$ defining features $\phi^i = [\phi(x^i, w^1) \ldots \phi(x^i, w^D)]^T$ and solve :

$$\hat{\theta} = \operatorname{argmin}_{\theta} \{ \sum_{i=1}^{n} c \left(\frac{1}{\sqrt{D}} \theta^{T} \phi^{i}, y^{i} \right) + r(\theta) \}$$
(6)

Set φⁱ = [φ(xⁱ, w¹)...φ(xⁱ, w^{N_w})]^T (original random samples from P₀) and directly solve:

$$\hat{\theta} = \operatorname{argmin}_{\theta} \{ \sum_{i=1}^{n} c \left(\theta^{T} \operatorname{diag}(\hat{q})^{1/2} \phi^{i}, y^{i} \right) + r(\theta) \}$$
(7)

▲御▶ ▲理▶ ▲理▶ 三連

Formulation contd.

- Given a solution \hat{q} , two ways to solve learning problem:
- Draw *D* samples $W^1, \ldots, W^d \sim \hat{q}$ defining features $\phi^i = [\phi(x^i, w^1) \ldots \phi(x^i, w^D)]^T$ and solve :

$$\hat{\theta} = \operatorname{argmin}_{\theta} \{ \sum_{i=1}^{n} c \left(\frac{1}{\sqrt{D}} \theta^{T} \phi^{i}, y^{i} \right) + r(\theta) \}$$
(6)

Set φⁱ = [φ(xⁱ, w¹)...φ(xⁱ, w^{N_w})]^T (original random samples from P₀) and directly solve:

$$\hat{\theta} = \operatorname{argmin}_{\theta} \{ \sum_{i=1}^{n} c \left(\theta^{T} \operatorname{diag}(\hat{q})^{1/2} \phi^{i}, y^{i} \right) + r(\theta) \}$$
(7)

• This is a two step approach

▲御▶ ★ 唐▶ ★ 唐▶ 二 唐

Introductior

- Motivation
- Background
- State-of-the-art

2 Proposed Approach

- Work-flow
- Formulation
- Efficient solution

Evaluation

- Learning a kernel
- Feature Selection
- Benchmark Datasets

• Re-write the optimization problem in (5) as:

$$q^{\mathsf{T}}((\phi y) \circ (\phi y)) \tag{8}$$

・ロト ・聞ト ・ヨト ・ヨト

æ

• Re-write the optimization problem in (5) as:

$$q^{T}((\phi y) \circ (\phi y)) \tag{8}$$

Also solve (5) via bisection over dual variable λ. Using λ ≥ 0 for constraint D_f(Q||P₀) ≤ ρ, partial Lagrangian is:

$$\mathcal{L}(q,\lambda) = q^{T}((\phi y) \circ (\phi y)) - \lambda(D_{f}(q||1/N_{w}) - \rho)$$
(9)

- 米間 と 米 語 と 米 語 と … 語

• Re-write the optimization problem in (5) as:

$$q^{T}((\phi y) \circ (\phi y)) \tag{8}$$

Also solve (5) via bisection over dual variable λ. Using λ ≥ 0 for constraint D_f(Q||P₀) ≤ ρ, partial Lagrangian is:

$$\mathcal{L}(q,\lambda) = q^{T}((\phi y) \circ (\phi y)) - \lambda(D_{f}(q||1/N_{w}) - \rho)$$
(9)

- **Consistency**: Solution to problem (5) approaches a population optimum as data and random sampling increases.
- **Generalization**: Class of estimators used has strong performance guarantees.

(本語) (本語) (本語) (二語

Introduction

- Motivation
- Background
- State-of-the-art

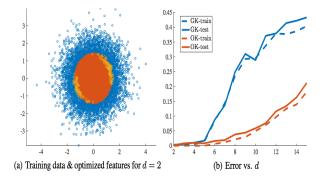
Proposed Approach

- Work-flow
- Formulation
- Efficient solution

3 Evaluation

- Learning a kernel
- Feature Selection
- Benchmark Datasets

Learning a kernel



3

- 4 同 6 4 日 6 4 日 6

Introduction

- Motivation
- Background
- State-of-the-art

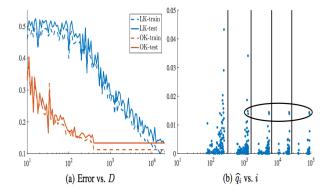
Proposed Approach

- Work-flow
- Formulation
- Efficient solution

3 Evaluation

- Learning a kernel
- Feature Selection
- Benchmark Datasets

Feature Selection



• • = • • = •

- 一司

Introduction

- Motivation
- Background
- State-of-the-art

Proposed Approach

- Work-flow
- Formulation
- Efficient solution

3 Evaluation

- Learning a kernel
- Feature Selection
- Benchmark Datasets

Table 1: Best test results over benchmark datasets

Dataset	n,	n _{test}	d	Model	Our error (%),	time(s)	Random error	r (%), time(s)
adult	32561,	16281	123	Logistic	15.54,	3.6	15.44,	43.1
reuters	23149,	781265	47236	Ridge	9.27,	0.8	9.36,	295.9
buzz	105530,	35177	77	Ridge	4.92,	2.0	4.58,	11.9

▲口> ▲圖> ▲注> ▲注> 三注

- Learn a kernel in a supervised manner using random features.
- Demonstrate consistency and generalization of the method.
- Attain competitive results on benchmark datasets with a fraction of training time.
- Future Direction
 - Usefulness of simple optimization methods on random features in speeding up traditionally expensive learning problems.

- 4 目 ト - 4 日 ト - 4 日 ト