Learning Deep Parsimonious Representations

$\begin{array}{ccc} \mbox{Renjie Liao}^1 & \mbox{Alexander Schwing}^2 & \mbox{Richard S.Zemel}^{1,3} & \mbox{Raquel} \\ & \mbox{Urtasun}^1 \end{array}$

¹University of Toronto

²University of Illinois at Urbana-Champaign

³Canadian Institute for Advanced

NIPS, 2016 Presenter: Beilun Wang

・ 何 ト ・ ヨ ト ・ ヨ ト

Introduction

- Motivation
- Previous Solutions
- Contributions

2 Proposed Methods

- Notations
- Problem setting
- Problem formulation

-∢ ∃ ▶

1 Introduction

Motivation

- Previous Solutions
- Contributions

2 Proposed Methods

- Notations
- Problem setting
- Problem formulation

3 Summary

3) 3

Motivation:

- Advanced Neural Network (NN) needs regularization, which is key to prevent overfitting and improve generalization of the learned classifier.
- No neural network representations to form clusters.
- Not that related to term "Parsimonious Representations"?

Problem Setting:

- Input: Training set
- Target: Regularized Deep Neural Net considering different clusters (e.g., sample clustering, spatial clustering, channel co-clustering).
- In this talk, I'll focus on sample clustering.

< 回 ト < 三 ト < 三 ト

Introduction

- Motivation
- Previous Solutions
- Contributions

2 Proposed Methods

- Notations
- Problem setting
- Problem formulation

3 Summary

- Batch Normalization : imposing constrains in the mini-batch
- Dropout : prevent co-adaption
- K-means clustering

3

Introduction

- Motivation
- Previous Solutions
- Contributions

2 Proposed Methods

- Notations
- Problem setting
- Problem formulation

3 Summary

- a new type of regularization that encourages the network representations to form clusters
- This benefits unsupervised learning and zero-shot learning.
- Certain equations in this paper is problematic.

< 回 ト < 三 ト < 三 ト

Introduction

- Motivation
- Previous Solutions
- Contributions

2 Proposed Methods

- Notations
- Problem setting
- Problem formulation

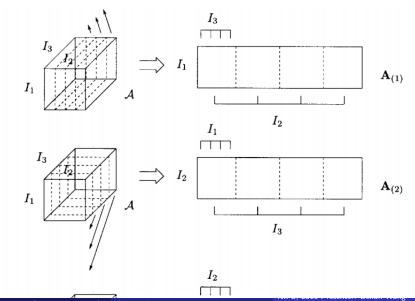
3 Summary

3) 3

- $[K]: \{1, 2, \ldots, K\}.$
- \setminus : The sets substraction.
- $\mathbf{Y} \in \mathbb{R}^{h_1 \times h_2 \times \cdots \times h_D}$: An *n*-mode vectors of a *D*-order tensor.
- $T^{\{I_n\} \times \{I_j | j \in [D] \setminus n\}}$: the *N*-node matrix unfolding.

・ロン ・聞と ・ヨン ・ヨン … ヨ

The *N*-node matrix unfolding



Renjie Liao, Alexander Schwing, Richard S.Ze Learning Deep Parsimonious Representations

A whiteboard example.

イロン イ理 とくほと くほとう

Introduction

- Motivation
- Previous Solutions
- Contributions

2 Proposed Methods

Notations

Problem setting

Problem formulation

3 Summary

.∃ >

3) 3

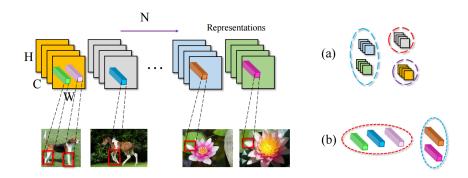
We assume the representation of one layer within a neural network to be a 4 - D tensor $\mathbf{Y} \in \mathbb{R}^{N \times C \times H \times W}$.

- N: the number of samples within a mini-batch
- C: the number of hidden units in this layer
- H: the height of the output of this layer
- W: the width of the output of this layer

For example, H = W = 1 when this layer is a fully connected layer.

くぼう くほう くほう

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $\circ D_2 = K$

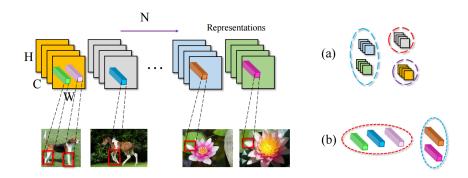


.

- 一司

ヨト イヨト

- Bottom layer representations may focus on low-level visual cues, such as color and edges.
- Top layer features may focus on high-level attributes which have a more semantic meaning.
- See the examples in the figure.



.

- 一司

ヨト イヨト

Introduction

- Motivation
- Previous Solutions
- Contributions

2 Proposed Methods

- Notations
- Problem setting
- Problem formulation

3 Summary

3

< 3 > < 3 >

To use the clusters in a certain layer, this paper choose the following formulation:

$$\arg\min\mathcal{L}+\mathcal{R}$$
 (1)

Where ${\cal L}$ is the loss function and ${\cal R}$ is a regularizer push the clustering structure in a certain layer.

The problem left is the formulation of \mathcal{R} .

Suppose $\mathbf{Y} \in \mathbb{R}^{N \times C \times H \times W}$, the matrix unfolding of \mathbf{Y} by the sample dimension is $\mathcal{T}^{\{N\} \times \{H,W,C\}}(\mathbf{Y}) \in \mathbb{R}^{N \times HWC}$. Then the regularizer formulate as follows:

$$\mathcal{R}_{\mathsf{sample}}(\mathbf{Y},\mu) = \frac{1}{2NHWC} \sum_{n=1}^{N} \parallel T^{\{N\} \times \{H,W,C\}}(\mathbf{Y})_n - \mu_{z_n} \parallel^2$$
(2)

Where μ is a matrix size $K \times HWC$ encoding all the centers with K the total number of clusters. $z_n \in [K]$ means which cluster the *n*-th sample belongs to.

Clearly, if the n-th sample belongs to a wrong cluster, the value of this regularizer becomes large.

- * @ * * 注 * * 注 * … 注

- In each layer you want to add this sample clustering regularization, you implement a smoothed k-means algorithm
- After you get fixed μ , you update weights by backpropogation.

Let $T^{\{N\}\times\{H,W,C\}}(\mathbf{Y}) = \mathbf{X}$. Then the gradient of regularizer equals to:

$$\frac{\partial \mathcal{R}}{\partial \mathbf{X}_n} = \frac{1}{NHWC} (\mathbf{X}_n - \mu_n)$$
(3)

Different from the paper.

米掃 とくほとくほとう 度

The result beats the state-of-art baselines in CIFAR 10 and CIFAR 100.

Dataset	CIFAR10 Train	CIFAR10 Test	CIFAR100 Train	CIFAR100 Test
Caffe	94.87 ± 0.14	76.32 ± 0.17	68.01 ± 0.64	46.21 ± 0.34
Weight Decay	95.34 ± 0.27	76.79 ± 0.31	69.32 ± 0.51	46.93 ± 0.42
DeCov	88.78 ± 0.23	79.72 ± 0.14	77.92	40.34
Dropout	99.10 ± 0.17	77.45 ± 0.21	60.77 ± 0.47	48.70 ± 0.38
Sample-Clustering	89.93 ± 0.19	81.05 ± 0.41	63.60 ± 0.55	50.50 ± 0.38
Spatial-Clustering	90.50 ± 0.05	$\textbf{81.02} \pm 0.12$	64.38 ± 0.38	$\textbf{50.18} \pm 0.49$
Channel Co-Clustering	89.26 ± 0.25	$\textbf{80.65} \pm 0.23$	63.42 ± 1.34	$\textbf{49.80} \pm 0.25$

- 문

イロン イ理 とくほと くほとう

- This paper propose a regularized loss function for the deep neural nets, which enforce the clustering in the NN.
- Some prolems left:
 - Some experiment results don't achieve the state-of-art.
 - Certain equation in the paper is hard to understand.