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Motivation

Motivation:

Advanced Neural Network (NN) needs regularization, which is key to
prevent overfitting and improve generalization of the learned classifier.

No neural network representations to form clusters.

Not that related to term “Parsimonious Representations”?

Problem Setting:

Input: Training set

Target: Regularized Deep Neural Net considering different clusters
(e.g., sample clustering, spatial clustering, channel co-clustering).

In this talk, I’ll focus on sample clustering.
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Previous Solutions

Batch Normalization : imposing constrains in the mini-batch

Dropout : prevent co-adaption

K-means clustering
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Contributions

a new type of regularization that encourages the network
representations to form clusters

This benefits unsupervised learning and zero-shot learning.

Certain equations in this paper is problematic.
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Notations

[K ]: {1, 2, . . . ,K}.
\: The sets substraction.

Y ∈ RI1×I2×···×ID : An n-mode vectors of a D-order tensor.

T {In}×{Ij |j∈[D]\n}: the N-node matrix unfolding.
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The N-node matrix unfolding
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The N-node matrix unfolding

A whiteboard example.
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Problem setting

We assume the representation of one layer within a neural network to be a
4− D tensor Y ∈ RN×C×H×W .

N: the number of samples within a mini-batch

C : the number of hidden units in this layer

H: the height of the output of this layer

W : the width of the output of this layer

For example, H = W = 1 when this layer is a fully connected layer.
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Calculate H and W
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Problem setting
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Problem setting: Clustering in different layers

Bottom layer representations may focus on low-level visual cues, such
as color and edges.

Top layer features may focus on high-level attributes which have a
more semantic meaning.

See the examples in the figure.

Renjie Liao, Alexander Schwing, Richard S.Zemel, Raquel Urtasun (University of Toronto, University of Illinois at Urbana-Champaign and Canadian Institute for Advanced Research)Learning Deep Parsimonious Representations
NIPS, 2016 Presenter: Beilun Wang 17

/ 24



Problem setting
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Key insight: Regularized formulation

To use the clusters in a certain layer, this paper choose the following
formulation:

arg minL+R (1)

Where L is the loss function and R is a regularizer push the clustering
structure in a certain layer.
The problem left is the formulation of R.
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Key insight: Sample Clustering Regularizer

Suppose Y ∈ RN×C×H×W , the matrix unfolding of Y by the sample
dimension is T {N}×{H,W ,C}(Y) ∈ RN×HWC . Then the regularizer
formulate as follows:

Rsample(Y, µ) =
1

2NHWC

N∑
n=1

‖ T {N}×{H,W ,C}(Y)n − µzn ‖2 (2)

Where µ is a matrix size K × HWC encoding all the centers with K the
total number of clusters. zn ∈ [K ] means which cluster the n-th sample
belongs to.
Clearly, if the n-th sample belongs to a wrong cluster, the value of this
regularizer becomes large.
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Key insight: How to optimize

In each layer you want to add this sample clustering regularization,
you implement a smoothed k-means algorithm

After you get fixed µ, you update weights by backpropogation.

Let T {N}×{H,W ,C}(Y) = X. Then the gradient of regularizer equals to:

∂R
∂Xn

=
1

NHWC
(Xn − µn) (3)

Different from the paper.
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Experiment Results

The result beats the state-of-art baselines in CIFAR 10 and CIFAR 100.
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Summary

This paper propose a regularized loss function for the deep neural
nets, which enforce the clustering in the NN.

Some prolems left:

Some experiment results don’t achieve the state-of-art.
Certain equation in the paper is hard to understand.
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