On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima

Nitish Shirish Keskar¹ Dheevatsa Mudigere² Jorge Nocedal¹ Mikhail Smelyanskiy² Ping Tak Peter Tang²

¹Northwestern University

²Intel Corporation

ICLR, 2017 Presenter: Tianlu Wang

• Batch Size of Stochastic Gradient Methods

2 Drawbacks of Large-Batch Methods

- Main Observation
- Numerical Results
- Parametric Plots
- Sharpness of Minima

3 Success of Small-Batch Methods

- Deterioration along Increasing of Batch-Size
- Warm-started Large Batch experiments

Introduction

Batch Size of Stochastic Gradient Methods

- Main Observation
- Numerical Results
- Parametric Plots
- Sharpness of Minima

- Deterioration along Increasing of Batch-Size
- Warm-started Large Batch experiments

Batch Size of Stochastic Gradient Methods

- Non-convex optimization in deep learning: $\min_{x \in \mathbb{R}^n} f(x) := \frac{1}{M} \sum_{i=1}^M f_i(x)$
- Stochastic Gradient Methods and its variants: |B_k| ∈ {32, 64, ..., 512}
- Increase batch size to improve parallelism leads to a loss in generalization performance

▲御 と ▲ 臣 と ▲ 臣 と …

Batch Size of Stochastic Gradient Methods

- Non-convex optimization in deep learning: $\min_{x \in \mathbb{R}^n} f(x) := \frac{1}{M} \sum_{i=1}^M f_i(x)$
- Stochastic Gradient Methods and its variants: |B_k| ∈ {32, 64, ..., 512}
- Increase batch size to improve parallelism leads to a loss in generalization performance

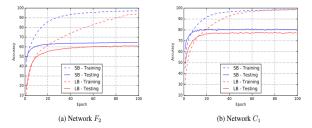


Figure 2: Training and testing accuracy for SB and LB methods as a function of epochs.

イロト イポト イヨト イヨト

Introductio

• Batch Size of Stochastic Gradient Methods

2 Drawbacks of Large-Batch Methods

Main Observation

- Numerical Results
- Parametric Plots
- Sharpness of Minima

Success of Small-Batch Methods

- Deterioration along Increasing of Batch-Size
- Warm-started Large Batch experiments

Main Observations

 Large-batch methods tend to converge to sharp minimizers of the training function and tend to generalize less well.
Small-batch methods converge to flat minimizers and are able to escape basins of attraction of sharp minimizers.

Main Observations

- Large-batch methods tend to converge to sharp minimizers of the training function and tend to generalize less well.
 Small-batch methods converge to flat minimizers and are able to escape basins of attraction of sharp minimizers.
- Sharp Minimizer x̂: function increases rapidly in a small neighborhood of x̂

Flat Minimizer \bar{x} : function varies slowly in a large neighborhood of \bar{x}

Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss function and the X-axis the variables (parameters)

• Batch Size of Stochastic Gradient Methods

2 Drawbacks of Large-Batch Methods

- Main Observation
- Numerical Results
- Parametric Plots
- Sharpness of Minima

3 Success of Small-Batch Methods

- Deterioration along Increasing of Batch-Size
- Warm-started Large Batch experiments

Numerical Results

 6 multi-class classification networks, mean cross entropy, ADAM optimizer, LB: 10% of training data, SB: 256 data points

Numerical Results

 6 multi-class classification networks, mean cross entropy, ADAM optimizer, LB: 10% of training data, SB: 256 data points

Table 1: Network Configurations

Name	Network Type	Architecture	Data set
F_1	Fully Connected	Section B.1	MNIST (LeCun et al., 1998a)
F_2	Fully Connected	Section B.2	TIMIT (Garofolo et al., 1993)
C_1	(Shallow) Convolutional	Section B.3	CIFAR-10 (Krizhevsky & Hinton, 2009)
C_2	(Deep) Convolutional	Section B.4	CIFAR-10
C_3	(Shallow) Convolutional	Section B.3	CIFAR-100 (Krizhevsky & Hinton, 2009)
C_4	(Deep) Convolutional	Section B.4	CIFAR-100

Numerical Results

 6 multi-class classification networks, mean cross entropy, ADAM optimizer, LB: 10% of training data, SB: 256 data points

Table 1: Network Configurations

Name	Network Type	Architecture	Data set
F_1	Fully Connected	Section B.1	MNIST (LeCun et al., 1998a)
F_2	Fully Connected	Section B.2	TIMIT (Garofolo et al., 1993)
C_1	(Shallow) Convolutional	Section B.3	CIFAR-10 (Krizhevsky & Hinton, 2009)
C_2	(Deep) Convolutional	Section B.4	CIFAR-10
C_3	(Shallow) Convolutional	Section B.3	CIFAR-100 (Krizhevsky & Hinton, 2009)
C_4	(Deep) Convolutional	Section B.4	CIFAR-100

	Training Accuracy		Testing Accuracy	
Name	SB	LB	SB	LB
F_1	$99.66\% \pm 0.05\%$	$99.92\% \pm 0.01\%$	$98.03\% \pm 0.07\%$	$97.81\% \pm 0.07\%$
F_2	$99.99\% \pm 0.03\%$	$98.35\% \pm 2.08\%$	$64.02\% \pm 0.2\%$	$59.45\% \pm 1.05\%$
C_1	$99.89\% \pm 0.02\%$	$99.66\% \pm 0.2\%$	$80.04\% \pm 0.12\%$	$77.26\% \pm 0.42\%$
C_2	$99.99\% \pm 0.04\%$	$99.99\% \pm 0.01\%$	$89.24\% \pm 0.12\%$	$87.26\% \pm 0.07\%$
C_3	$99.56\% \pm 0.44\%$	$99.88\% \pm 0.30\%$	$49.58\% \pm 0.39\%$	$46.45\% \pm 0.43\%$
C_4	$99.10\% \pm 1.23\%$	$99.57\% \pm 1.84\%$	$63.08\% \pm 0.5\%$	$57.81\% \pm 0.17\%$

Nitish Shirish Keskar, Dheevatsa Mudigere, Jon Large-Batch Training for Deep Learning:

• Generalization gap is not due to over-fitting or over-training ???

イロト 不得 とくほと くほとう ほ

• Generalization gap is not due to over-fitting or over-training ???

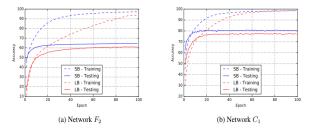


Figure 2: Training and testing accuracy for SB and LB methods as a function of epochs.

3

(日) (周) (三) (三)

Introductio

• Batch Size of Stochastic Gradient Methods

2 Drawbacks of Large-Batch Methods

- Main Observation
- Numerical Results
- Parametric Plots
- Sharpness of Minima

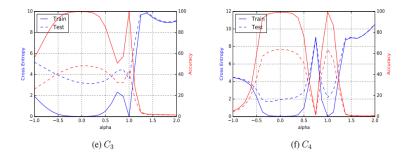
Success of Small-Batch Methods

- Deterioration along Increasing of Batch-Size
- Warm-started Large Batch experiments

- x_s^* and x_l^* :solutions obtained by SB and LB
- plot $f(\alpha x_{l}^{*} + (1 \alpha)x_{s}^{*})$:

イロト イ団ト イヨト イヨト 三日

- x_s^* and x_l^* :solutions obtained by SB and LB
- plot $f(\alpha x_{l}^{*} + (1 \alpha)x_{s}^{*})$:



3) 3

• Batch Size of Stochastic Gradient Methods

2 Drawbacks of Large-Batch Methods

- Main Observation
- Numerical Results
- Parametric Plots
- Sharpness of Minima

Success of Small-Batch Methods

- Deterioration along Increasing of Batch-Size
- Warm-started Large Batch experiments

 Motivation: Measure the sensitivity of training function at the given local minimizer, so we want to explore a small neighborhood of a minimizer and compute the largest value that f can attain in this neighborhood.

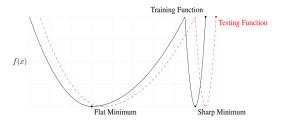


Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss function and the X-axis the variables (parameters)

Sharpness of Minima

• Small neighborhood:

- p: dimension of manifold
- A: $n \times p$ matrix, columns are randomly generated
- A^+ : pesudo-inverse of A

$$C_{\varepsilon} = \{ z \in \mathbb{R}^n : -\varepsilon(|x_i|+1) \le z_i \le \varepsilon(|x_i|+1) \}$$

$$\forall i \in \{1, 2, \dots, n\}$$

$$egin{aligned} \mathcal{C}_arepsilon &= \{z \in \mathbb{R}^{p}: -arepsilon(|(\mathcal{A}^+x)_i|+1) \leq z_i \leq arepsilon(|(\mathcal{A}^+x)_i|+1)\} \ & orall i \in \{1,2,\ldots,p\} \end{aligned}$$

• Metric 2.1. Given $x \in \mathbb{R}^n$, $\varepsilon > 0$ and $A \in \mathbb{R}^{n*p}$, the sharpness of f at x: $(m_{2X} - \varepsilon f(x + Ay)) = f(x)$

$$\phi_{x,f}(\varepsilon,A) := \frac{(\max_{y \in C_{\varepsilon}} f(x + Ay)) - f(x)}{1 + f(x)} \times 100$$
(1)

• A can be the identity matrix I_n

• Sharpness of Minima in Full Space(A is the identity matrix):

		$\epsilon = 10^{-3}$		$\epsilon = 5 \cdot 10^{-4}$	
		SB	LB	SB	LB
_	F_1	1.23 ± 0.83	205.14 ± 69.52	0.61 ± 0.27	42.90 ± 17.14
	F_2	1.39 ± 0.02	310.64 ± 38.46	0.90 ± 0.05	93.15 ± 6.81
	C_1	28.58 ± 3.13	707.23 ± 43.04	7.08 ± 0.88	227.31 ± 23.23
	C_2	8.68 ± 1.32	925.32 ± 38.29	2.07 ± 0.86	175.31 ± 18.28
	C_3	29.85 ± 5.98	258.75 ± 8.96	8.56 ± 0.99	105.11 ± 13.22
	C_4	12.83 ± 3.84	421.84 ± 36.97	4.07 ± 0.87	109.35 ± 16.57

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Batch Size of Stochastic Gradient Methods

2 Drawbacks of Large-Batch Methods

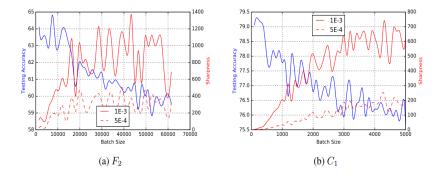
- Main Observation
- Numerical Results
- Parametric Plots
- Sharpness of Minima

3 Success of Small-Batch Methods

- Deterioration along Increasing of Batch-Size
- Warm-started Large Batch experiments

Deterioration along Increasing of Batch-Size

• Note batch-size \approx 15000 for F_2 and batch-size \approx 500 for C_1



• There exists a threshold after which there is a deterioration in the quality of the model.

• Batch Size of Stochastic Gradient Methods

2 Drawbacks of Large-Batch Methods

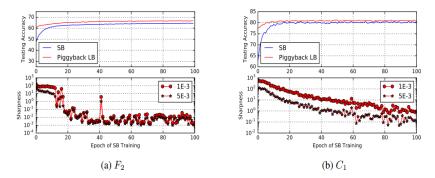
- Main Observation
- Numerical Results
- Parametric Plots
- Sharpness of Minima

3 Success of Small-Batch Methods

- Deterioration along Increasing of Batch-Size
- Warm-started Large Batch experiments

Warm-started Large Batch experiments

• Train network for 100 epochs with batch-size=256 and use these 100 epochs as starting points.



 The SB method needs some epochs to explore and discover a flat minimizer.

- Numerical experiments that support the view that convergence to sharp minimizers gives rise to the poor generalization of large-batch methods for deep learning.
- SB methods have an exploration phase followed by convergence to a flat minimizer.
- Attempts to remedy the problem:
 - Data augmentation
 - Conservative training
 - Adversarial training
 - Robust optimization