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Batch Size of Stochastic Gradient Methods

Non-convex optimization in deep learning:
minx∈Rn f (x) := 1

M

∑M
i=1 fi (x)

Stochastic Gradient Methods and its variants:
|Bk | ∈ {32, 64, . . . , 512}
Increase batch size to improve parallelism leads to a loss in
generalization performance
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Main Observations

Large-batch methods tend to converge to sharp minimizers of the
training function and tend to generalize less well.
Small-batch methods converge to flat minimizers and are able to
escape basins of attraction of sharp minimizers.

Sharp Minimizer x̂ : function increases rapidly in a small neighborhood
of x̂
Flat Minimizer x̄ : function varies slowly in a large neighborhood of x̄
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Numerical Results

6 multi-class classification networks, mean cross entropy, ADAM
optimizer, LB: 10% of training data, SB: 256 data points
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Question

Generalization gap is not due to over-fitting or over-training ???
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Parametric Plots

x∗s and x∗l :solutions obtained by SB and LB

plot f (αx∗l + (1− α)x∗s ):
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Sharpness of Minima

Motivation: Measure the sensitivity of training function at the given
local minimizer, so we want to explore a small neighborhood of a
minimizer and compute the largest value that f can attain in this
neighborhood.
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Sharpness of Minima

Small neighborhood:
p: dimension of manifold
A: n × p matrix,columns are randomly generated
A+: pesudo-inverse of A

Cε = {z ∈ Rn : −ε(|xi |+ 1) ≤ zi ≤ ε(|xi |+ 1)}
∀i ∈ {1, 2, . . . , n}

Cε = {z ∈ Rp : −ε(|(A+x)i |+ 1) ≤ zi ≤ ε(|(A+x)i |+ 1)}
∀i ∈ {1, 2, . . . , p}

Metric 2.1. Given x ∈ Rn, ε > 0 and A ∈ Rn∗p, the sharpness of f
at x :

φx ,f (ε,A) :=
(maxy∈Cε f (x + Ay))− f (x)

1 + f (x)
× 100 (1)

A can be the identity matrix In
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Sharpness of Minima

Sharpness of Minima in Full Space(A is the identity matrix):
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Deterioration along Increasing of Batch-Size

Note batch-size≈ 15000 for F2 and batch-size≈ 500 for C1

There exists a threshold after which there is a deterioration in the
quality of the model.
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Warm-started Large Batch experiments

Train network for 100 epochs with batch-size=256 and use these 100
epochs as starting points.

The SB method needs some epochs to explore and discover a flat
minimizer.
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Summary

Numerical experiments that support the view that convergence to
sharp minimizers gives rise to the poor generalization of large-batch
methods for deep learning.

SB methods have an exploration phase followed by convergence to a
flat minimizer.

Attempts to remedy the problem:

Data augmentation
Conservative training
Adversarial training
Robust optimization
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