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Motivation

Understanding of how and why neural networks achieve empirical
success is lacking.

Neural Network Expressivity : To characterize how structural
properties of neural network affect functions it is able to compute.

Neural Network (NN) Architecture: A (certain depth, width, layer
type)

All parameters of the network: W

Input: x

Associated Function: FA(x ;W )

Goal: To understand how behavior of FA(x ;W ) changes when A
changes.
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State-of-the-art

Studying expressivity using highly theoretical approaches like,
comparison to boolean circuits etc.

Drawback: Results shown on shallow networks that are different
from deep networks used today.

Understanding benefits of depth for neural networks, showing
separations between deep and shallow networks.

Drawback: Results on very specific choice of weights (hand-coded)
and focus on only lower bounds.
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Contributions

Propose easily computable measures of of NN expressivity.

Study input transformation by the network by measuring trajectory
length, find exponential depth dependence of these measures.

Show that all weights are not equal and optimizing weights of lower
layers matter more.

Propose new method of Trajectory Regularization,which is as good as
batch normalization but more computationally efficient.
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Trajectory

Definition

Given two points,x0, x1 ∈ Rm, x(t) is a trajectory (between x0 and x1) if
x(t) is a curve parameterized by a scalar t ∈ [0, 1], with x(0) = x0 and
x(1) = x1 .
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Neuron Transitions

Definition

For fixed W , a neuron with piecewise linear region transitions between
inputs x , x + δ if its activation function switches linear regions between x
and x + δ.
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Activation Pattern

Definition

Activation pattern, AP(FA(x(t));W )), is a string of form {0, 1}N (for
ReLUs) and {−1, 0, 1}N (for hard tanh) of the network encoding the linear
region of activation function of every neuron, for an input x and weights
W .
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(Tight) Upper Bound for Number of Activation Patterns

Theorem

Let A(n,k) denote a fully connected network with n hidden layers of width
k, and inputs in Rm. Then the number of activation patterns
A(FA(n.k)

(Rm;W )) is upper bounded by O(kmn) for ReLU activation, and
O((2k)mn) for hard tanh.
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Regions in Input Space

Theorem

Given the corresponding function of a neural network FA(Rm;W ) with
ReLU or hard tanh activations, the input space is partitioned into convex
polytopes, with FA(Rm;W ) corresponding to a different linear function on
each region.
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Trajectory Length

Definition

Given a trajectory, x(t), its length l(x(t)), is the standard arc length:

l(x(t)) =

∫
t

∥∥∥∥dx(t)

dt

∥∥∥∥ dt (1)
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Bound on Growth of Trajectory Length

A(n,k) is fully connected network with n hidden layers of width k each.

Initialize weights ∼ N (0, σ2w/k) and biases ∼ N (0, σ2b).

Theorem

Let FA(x ′,W ) be a ReLU or hard tanh random neural network and x(t) a
one dimensional trajectory with x(t + δ) having a non-trivial perpendicular
component to x(t) for all t and δ (i.e, not a line). Then defining
z(d)(x(t)) = z(d)(t) to be the image of the trajectory in layer d of the
network:

E [l(z(d)(t)] ≥ O

(
σw
√
k√

k + 1

)d

l(x(t))[ReLUs] (2)

E [l(z(d)(t)] ≥ O

(
σw
√
k

σ2w + σ2b + k
√
σ2w + σ2b

)d

l(x(t))[hardtanh] (3)
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Bound on Growth of Trajectory Length
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Transitions proportional to trajectory length

Theorem

Let FA(n,k)
be a hard tanh network with n hidden layers each of width k.

And let

g(k , σw , σb, n) = O

( √
k√

1 + σ2
w

σ2
b

)n

(4)

Then T (FA(n,k)
(x(t);W )) = O(g(k , σw , σb, n)) for W initialized with

weight and bias scales σw , σb.
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Expressivity and Network Stability

A perturbation at a layer grows exponentially in the remaining depth
after that layer
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Trajectory Regularization

Initial growth of trajectory length enables greater functional
expressivity, however, large trajectory growth in the learnt
representation results in unstable representation.

Batch normalization layers reduce trajectory length, helping stability
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Summary

Presented interrelated measures of expressivity of NN.

Analysis of trajectories gives insight for performance of trained NNs.

Developed new regularization method, trajectory regularization.

Future work

Linking measures of expressivity to other properties of NN performance.
Natural connection between adverserial samples and trajectory length.

Maithra Raj, Ben Poole, Jon Kleinberg, Surya Ganguli, Jascha Sohl Dickstein (Cornell University and Google Brain and Stanford University)On the Expressive Power of Deep Neural Networks
ICLR, 2017 Presenter: Ritambhara Singh 24

/ 24


	Introduction
	Motivation
	State-of-the-art
	Contributions

	Measures of Expressivity
	Neuron Transitions and Activity Patterns
	Trajectory length

	Insights
	Expressivity and Network Stability
	Trajectory Regularization


