On the Expressive Power of Deep Neural Networks

Maithra Raj^{1,2}

Ben Poole³ Jon Kleinberg¹ Jascha Sohl Dickstein²

Surya Ganguli³

¹Cornell University

²Google Brain

³Stanford University

ICLR, 2017 Presenter: Ritambhara Singh

Introduction

- Motivation
- State-of-the-art
- Contributions

2 Measures of Expressivity

- Neuron Transitions and Activity Patterns
- Trajectory length

- Expressivity and Network Stability
- Trajectory Regularization

Introduction

Motivation

- State-of-the-art
- Contributions

Measures of Expressivity

- Neuron Transitions and Activity Patterns
- Trajectory length

- Expressivity and Network Stability
- Trajectory Regularization

• Understanding of how and why neural networks achieve empirical success is lacking.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Understanding of how and why neural networks achieve empirical success is lacking.
- Neural Network Expressivity: To characterize how structural properties of neural network affect functions it is able to compute.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Understanding of how and why neural networks achieve empirical success is lacking.
- Neural Network Expressivity: To characterize how structural properties of neural network affect functions it is able to compute.
- Neural Network (NN) Architecture: A (certain depth, width, layer type)
- All parameters of the network: W
- Input: x
- Associated Function: $F_A(x; W)$

- Understanding of how and why neural networks achieve empirical success is lacking.
- Neural Network Expressivity: To characterize how structural properties of neural network affect functions it is able to compute.
- Neural Network (NN) Architecture: A (certain depth, width, layer type)
- All parameters of the network: W
- Input: x
- Associated Function: $F_A(x; W)$
- **Goal:** To understand how behavior of $F_A(x; W)$ changes when A changes.

くぼう くほう くほう

Introduction

- Motivation
- State-of-the-art
- Contributions

Measures of Expressivity

- Neuron Transitions and Activity Patterns
- Trajectory length

- Expressivity and Network Stability
- Trajectory Regularization

- Studying expressivity using highly theoretical approaches like, comparison to boolean circuits etc.
- **Drawback:** Results shown on shallow networks that are different from deep networks used today.
- Understanding benefits of depth for neural networks, showing separations between deep and shallow networks.
- **Drawback:** Results on very specific choice of weights (hand-coded) and focus on only lower bounds.

< 回 > < 三 > < 三 > .

Introduction

- Motivation
- State-of-the-art
- Contributions

Measures of Expressivity

- Neuron Transitions and Activity Patterns
- Trajectory length

- Expressivity and Network Stability
- Trajectory Regularization

- Propose easily computable measures of of NN expressivity.
- Study input transformation by the network by measuring *trajectory length*, find exponential depth dependence of these measures.
- Show that all weights are not equal and optimizing weights of lower layers matter more.
- Propose new method of *Trajectory Regularization*, which is as good as batch normalization but more computationally efficient.

- 4 目 ト - 4 日 ト - 4 日 ト

Introduction

- Motivation
- State-of-the-art
- Contributions

2 Measures of Expressivity

• Neuron Transitions and Activity Patterns

• Trajectory length

- Expressivity and Network Stability
- Trajectory Regularization

Given two points, $x_0, x_1 \in \mathbb{R}^m$, x(t) is a *trajectory* (between x_0 and x_1) if x(t) is a curve parameterized by a scalar $t \in [0, 1]$, with $x(0) = x_0$ and $x(1) = x_1$.

< 回 ト < 三 ト < 三 ト

For fixed W, a neuron with piecewise linear region *transitions* between inputs $x, x + \delta$ if its activation function switches linear regions between x and $x + \delta$.

Activation pattern, $AP(F_A(x(t)); W))$, is a string of form $\{0,1\}^N$ (for ReLUs) and $\{-1,0,1\}^N$ (for hard tanh) of the network encoding the linear region of activation function of **every** neuron, for an input x and weights W.

Theorem

Let $A_{(n,k)}$ denote a fully connected network with n hidden layers of width k, and inputs in \mathbb{R}^m . Then the number of activation patterns $A(F_{A_{(n,k)}}(\mathbb{R}^m; W))$ is upper bounded by $O(k^{mn})$ for ReLU activation, and $O((2k)^{mn})$ for hard tanh.

Theorem

Given the corresponding function of a neural network $F_A(R^m; W)$ with ReLU or hard tanh activations, the input space is partitioned into convex polytopes, with $F_A(R^m; W)$ corresponding to a different linear function on each region.

Theorem

Given the corresponding function of a neural network $F_A(R^m; W)$ with ReLU or hard tanh activations, the input space is partitioned into convex polytopes, with $F_A(R^m; W)$ corresponding to a different linear function on each region.

Introduction

- Motivation
- State-of-the-art
- Contributions

2 Measures of Expressivity

- Neuron Transitions and Activity Patterns
- Trajectory length

- Expressivity and Network Stability
- Trajectory Regularization

Given a trajectory, x(t), its length I(x(t)), is the standard arc length:

$$I(x(t)) = \int_{t} \left\| \frac{dx(t)}{dt} \right\| dt$$
(1)

・ 同 ト ・ ヨ ト ・ ヨ ト

Bound on Growth of Trajectory Length

- $A_{(n,k)}$ is fully connected network with *n* hidden layers of width *k* each.
- Initialize weights $\sim \mathcal{N}(0, \sigma_w^2/k)$ and biases $\sim \mathcal{N}(0, \sigma_b^2)$.

Theorem

Let $F_A(x', W)$ be a ReLU or hard tanh random neural network and x(t) a one dimensional trajectory with $x(t + \delta)$ having a non-trivial perpendicular component to x(t) for all t and δ (i.e, not a line). Then defining $z^{(d)}(x(t)) = z^{(d)}(t)$ to be the image of the trajectory in layer d of the network:

$$E[I(z^{(d)}(t)] \ge O\left(\frac{\sigma_w \sqrt{k}}{\sqrt{k+1}}\right)^d I(x(t))[ReLUs]$$
(2)

$$E[I(z^{(d)}(t)] \ge O\left(\frac{\sigma_w\sqrt{k}}{\sigma_w^2 + \sigma_b^2 + k\sqrt{\sigma_w^2 + \sigma_b^2}}\right)^d I(x(t))[hardtanh]$$
(3)

Bound on Growth of Trajectory Length

3

(日) (周) (三) (三)

Transitions proportional to trajectory length

Theorem

Let $F_{A_{(n,k)}}$ be a hard tanh network with n hidden layers each of width k. And let

$$g(k, \sigma_w, \sigma_b, n) = O\left(\frac{\sqrt{k}}{\sqrt{1 + \frac{\sigma_w^2}{\sigma_b^2}}}\right)^n$$
(4)

Then $T(F_{A_{(n,k)}}(x(t); W)) = O(g(k, \sigma_w, \sigma_b, n))$ for W initialized with weight and bias scales σ_w, σ_b .

Transitions proportional to trajectory length

Theorem

Let $F_{A_{(n,k)}}$ be a hard tanh network with n hidden layers each of width k. And let

$$g(k,\sigma_w,\sigma_b,n) = O\left(\frac{\sqrt{k}}{\sqrt{1+\frac{\sigma_w^2}{\sigma_b^2}}}\right)^n \tag{4}$$

Then $T(F_{A_{(n,k)}}(x(t); W)) = O(g(k, \sigma_w, \sigma_b, n))$ for W initialized with weight and bias scales σ_w, σ_b .

Introduction

- Motivation
- State-of-the-art
- Contributions

2 Measures of Expressivity

- Neuron Transitions and Activity Patterns
- Trajectory length

- Expressivity and Network Stability
- Trajectory Regularization

Expressivity and Network Stability

• A perturbation at a layer grows exponentially in the remaining depth after that layer

< 同 ト く ヨ ト く ヨ ト

Expressivity and Network Stability

• A perturbation at a layer grows exponentially in the remaining depth after that layer

Introduction

- Motivation
- State-of-the-art
- Contributions

2 Measures of Expressivity

- Neuron Transitions and Activity Patterns
- Trajectory length

- Expressivity and Network Stability
- Trajectory Regularization

• Initial growth of trajectory length enables greater functional expressivity, however, large trajectory growth in the learnt representation results in unstable representation.

< 同 ト く ヨ ト く ヨ ト

 Initial growth of trajectory length enables greater functional expressivity, however, large trajectory growth in the learnt representation results in unstable representation.

.

• Initial growth of trajectory length enables greater functional expressivity, however, large trajectory growth in the learnt representation results in unstable representation.

• Batch normalization layers reduce trajectory length, helping stability

.⊒ . ►

• Initial growth of trajectory length enables greater functional expressivity, however, large trajectory growth in the learnt representation results in unstable representation.

• Batch normalization layers reduce trajectory length, helping stability

Maithra Raj, Ben Poole, Jon Kleinberg, Sury¿On the Expressive Power of Deep Neural Net

- Presented interrelated measures of expressivity of NN.
- Analysis of trajectories gives insight for performance of trained NNs.
- Developed new regularization method, trajectory regularization.
- Future work
 - Linking measures of expressivity to other properties of NN performance.
 - Natural connection between adverserial samples and trajectory length.