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Generalization Error

1 Generalization error = test error − training error

2 A network that generalizes well has comparable performance on the
test and training set

3 p >> n in neural networks, still low generalization error

4 Question: What makes a NN with good generalization different from
one that generalizes poorly?
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Traditional View of generalization

1 Model Family
2 Complexity Measures:

1 Rademacher Complexity
2 Uniform Stability
3 VC dimension

3 Regularization
1 Explicit Regularization: weight decay, dropout,etc
2 Implicit Regularization: early stopping, batch norm,etc
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Effective Capacity of Neural Networks

Experiments with the following modifications of input and labeled data:

1 original data

2 partially corrupted labels: independently with probability p, the label
of each image is corrupted as a uniform random class

3 Randomize labels completely: No relationship between data and labels

4 shuffled pixels: same random permutation of pixels to all images

5 Random Pixels: different random permutation of pixels to all images

6 Gaussian: Use gaussian to generate random pixels

Ideally, should affect training procedure as there is no relationship between
input and output.
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Results

Figure: Randomization tests results

1 Training Error zero: fits the data perfectly/Overfitting

2 No changes in training procedure

3 more corruption slows convergence
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Implications

1 Rademacher Complexity:

Eσ

[
sup
h∈H

1

n

n∑
i=1

σih(xi )
]

(1)

where σ1, σ1, σ1,∈ +1,−1 are iid random variables
Indicates how well a model in the hypothesis class fits a random
assignment.

2 Because the NNs fit the training data perfectly, R(H) ≈ 1. But, this
is the upper bound for Rademacher complexity.generalization is
between zero and the worst case.

3 Uniform Stability: Uniform stability of an algorithm A measures how
sensitive the algorithm is to the replacement of a single example. A
property of the algorithm/Has no relationship to data/distribution of
labels
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Regularization and generalization

1

Figure: Regularization and Generalization

2 Key Observations:
1 Even with regularization, networks generalize fine.
2 Even with regularization, training error is still zero: fit perfectly.

ChiyuanZhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals (Massachusetts Institute of Technology and University of California, Berkeley and Google Brain and Google DeepMind)Understanding Deep Learning Requires Rethinking Generalization
ICLR, 2017 Presenter: Arshdeep Sekhon 7

/ 13



Implicit Regularization and Generalization

1 Early Stopping

2 Batch Normalization

Figure: Implicit Regularization

3 Continue to perform well without regularization
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Regularization for Generalization: Key Insights

1 Regularization improves generalization ability.

2 Not the key reason for generalization.
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Model Expressivity

1 Old/Previous View: What functions can be expressed by certain
classes of neural networks?

2 Finite Sample Expressivity: Given n samples of d dimension,
parameters required to express any function?
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Theorem: Finite Sample Expressivity

Theorem:
There exists a two-layer neural network with ReLU activations and 2n + d
weights that can represent any function on a sample of size n in d
dimensions.
Proof:
Lemma 1:
For any interleaving sequences of n real numbers,
b1 < x1 < b2 <, · · · , bn < xn, the n × n matrix A = max [xi − bj , 0] has
full rank.
Proof:
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Theorem: Finite Sample Expressivity

consider function:

c(x) =
n∑

j=1

wj

[
max< a, x > −bj , 0

]
(2)

1 This can be expressed as a 2 layer ReLU network

2 S = z1, · · · , zn
3 xi =< a, zi >

4 Choose a,b such that the interleaving property
b1 < x1 < b2 <, · · · , bn < xn, is satisfied

5 Reduces to y = Aw

6 because A is invertible by the lemma,

7 Find suitable weights w
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Key contributions

1 Traditional Views fail to explain generalization

2 Regularization methods are not sufficient or necessary for explaining
generalization

3 Optimization is easy even if the resulting model does not generalize
well
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