Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction

Wen Sun1, Arun Venkatraman1, Geoffrey J. Gordon1, Byron Boots2, J. Andrew Bagnell1

1School of Computer Science, Carnegie Mellon University, USA
2College of Computing, Georgia Institute of Technology, USA

ICML 17'/ Presenter: Ji Gao
Outline

1 Motivation
2 Background
3 Method
4 Analysis
5 Experiments
Motivation

- For some task, there are oracle policy could be utilized. (For example, human expert)
- Imitation learning: Supervised learning on the oracle
- AggreVaTeD: Differentiable version of AggreVaTe (Aggregate Values to Imitate (Ross & Bagnell, 2014))
Definition: Markov Decision Process

A MDP is defined as \((S, A, P, C, \rho_0, H)\).

\(S\): Set of states
\(A\): Set of Actions

\(P(s_{t+1}|s_t, a_t)\): Transition probability

\(C(\cdot|s_t, a_t)\): A distribution of cost (negative reward). \(\bar{c}(s_t, a_t)\): Expected cost.

\(\rho_0\): initial distribution

\(H\): Max Length of the MDP

Define a policy \(\pi(\cdot|s)\) as a probability distribution on \(A\).

The final distribution of the trajectories \(\tau = (s_1, a_1, \ldots, a_{H-1}, s_H)\) is determined by \(\rho\) and the MDP, as:

\[
\rho_\pi(\tau) = \rho_0(s_1) \prod_{t=2}^{H} \pi(a_{t-1}|s_{t-1})P_{t-1}(s_t|s_{t-1}, a_{t-1})
\]
Value function:

\[Q_\pi^t(s_t, a_t) = \bar{c}_t(s_t, a_t) + \mathbb{E}_{s \sim P_t(\cdot|s_t, a_t), a \sim \pi(\cdot|s)} Q^\pi_{t+1}(s, a) \]

- Define expert policy \(\pi^* \) and expert oracle value \(Q^*_t(s, a) \).
- Assume \(Q^*_t(s, a) \) is known or can be estimated without bias.
- Idea: Approximate the export policy using an RNN.
Use an online learner to update policies using the loss function at episode n:
\[l_n(\pi) = \frac{1}{H} \sum_{t=1}^{H} \mathbb{E}_{s_t} \left[\mathbb{E}_{a \sim \pi} \left[Q^*_t(s_t, a) \right] \right] \]

Specifically, the algorithm use Follow-the-Leader to update polices:
\[\pi_{n+1} = \arg \min_{\pi \in \Pi} \sum_{i=1}^{n} l_n(\pi) \]
\(\Pi \) is a predefined convex set.

After N iterations, the algorithm can find a policy with:
\[\mu(\hat{\pi}) \leq \mu(\pi^*) - \epsilon_N + O(\ln(N)/N) \]
Where \(\epsilon_N = \left[\sum_{n=1}^{N} l_n(\pi^*) - \min_{\pi} \sum_{n=1}^{N} l_n(\pi) \right] / N \)

Can outperform the original \(\pi^* \) when \(\pi^* \) is not optimal in the loss.
Gradient of the policy

- Suppose the policy π is parametrized by θ.
- If actions are discrete, the gradient of $l_n(\pi_\theta)$ is:

$$
\nabla_\theta l_n(\theta) = \frac{1}{H} \sum_{t=1}^{H} \mathbb{E}_{\pi_\theta} \sum_a \nabla_\theta \pi(a|s_t; \theta) Q_t(s_t, a)
$$

- If the actions are continuous, the score function must be changed to

$$
l_n(\pi_\theta) = \frac{1}{H} \mathbb{E}_{\tau \sim \rho_{\pi_\theta}} \sum_{t=1}^{H} \frac{\pi(a_t|s_t; \theta)}{\pi(a_t|s_t; \theta_n)} Q^*_t(s_t, a_t)
$$

In this form, the gradient is

$$
\nabla_\theta l_n(\theta) = \frac{1}{H} \mathbb{E}_{\tau \sim \rho_{\pi_\theta}} \sum_{t=1}^{H} \nabla_\theta \ln(\pi(a|s_t; \theta_n)) Q_t(s_t, a_t)
$$

- Then the θ could be efficiently updated via gradient descent.
Natural Gradient

- If the parameter space is not an Euclidean space, gradient might be suboptimal.

- Natural Gradient: The steepest direction of change of a function whose manifold is on a Riemannian space.

- Euclidean space with orthonormal $|dw|^2 = \sum_i dw_i^2$

- Riemannian space: $|dw|^2 = \sum_{i,j} g_{ij} w_i w_j$, where $G = g_{ij}$ is the Riemannian metric tensor.

- In the case of MDP, the trajectory is a variable in Riemannian space. The Fisher Information matrix is:

$$I(\theta_n) = \frac{1}{H^2} \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_n}}} \nabla_{\theta_n} \log(\rho_{\pi_{\theta_n}}(\tau)) \nabla_{\theta_n} \log(\rho_{\pi_{\theta_n}}(\tau))^T$$

- Natural gradient update:

$$\theta_{n+1} = \theta_n - \eta_n I(\theta_n)^{-1} \nabla_{\theta} I_n(\theta)$$
Use sampling to approximate gradient:

\[
\tilde{\nabla}_\theta l_n(\theta) = \frac{1}{HK} \sum_{t=1}^{H} \sum_{i=1}^{K} \sum_a \nabla_\theta \pi(a|s^i_t; \theta) Q_t(s^i_t, a)
\]
Algorithm

Use an annealing way to train:

Algorithm 1 AggreVaTeD (Differentiable AggreVaTe)

1: **Input:** The given MDP and expert π^*. Learning rate $\{\eta_n\}$. Schedule rate $\{\alpha_i\}$, $\alpha_n \to 0, n \to \infty$.
2: Initialize policy π_{θ_1} (either random or supervised learning).
3: **for** $n = 1$ to N **do**
4: Mixing policies: $\hat{\pi}_n = \alpha_n \pi^* + (1 - \alpha_n) \pi_{\theta_n}$.
5: Starting from ρ_0, roll in by executing $\hat{\pi}_n$ on the given MDP to generate K trajectories $\{\tau^n_i\}$.
6: Using Q^* and $\{\tau^n_i\}_i$, compute the descent direction δ_{θ_n} (Eq. 10, Eq. 11, Eq. 12, Eq. 13, or CG).
7: Update: $\theta_{n+1} = \theta_n - \eta_n \delta_{\theta_n}$.
8: **end for**
9: **Return:** the best hypothesis $\hat{\pi} \in \{\pi_n\}_n$ on validation.
Compare IL and RL

- Suppose an MDP is a tree with \(S = 2^K - 1 \) states, and only leaf have a cost, random sampled from a given distribution.

- RL have the regret \(E[R_N] \geq \Omega(\sqrt{SN}) \).

- However, IL have the regret \(R_N \leq O(\ln S) \) with the optimal \(Q^* \), because it can directly know which way to go.

- In the case that the query of \(Q^* \) is noisy, it is proved that AggreVaTeD can achieve the regret bound for the tree MDP with at least \(1 - \delta \) probability:

\[
R_N \leq O(\ln(S)(\sqrt{\ln(S)N}) + \sqrt{\ln(2/\delta)N})
\]
Near Optimality

In the general case, with access to an unbiased estimates of Q^*, the algorithm achieves the regret upper bound:

$$R_N \leq O(HQ_{e_{max}}^e \sqrt{|S| \ln(|A|)N})$$

Q^e_{max} is the largest cost-to-go value of the expert.

Also, it is proved that there exists an MDP($H=1$) that with access to the unbiased estimates of Q^*, any imitation learning algorithm have:

$$E[R_N] \geq \Omega(\sqrt{|S| \ln(|A|)N})$$
Experiment 1 - Simulations of robots using OpenAI Gym

- Simulations of robots using OpenAI Gym
- Tasks:
 - Cartpole
 - Acrobot
 - Hopper
 - Walker
Figure 2. Performance (cumulative reward R on y-axis) versus number of episodes (n on x-axis) of AggreVaTeD (blue and green), experts (red), and RL algorithms (dotted) on different robotics simulators.
Parse handwritten algebra from raw image

RNN policy from (Sutskever et al., 2014) paper

<table>
<thead>
<tr>
<th>Are-Enger</th>
<th>AggreVaTeD (LSTMs)</th>
<th>AggreVaTeD (NN)</th>
<th>SL-RL (LSTMs)</th>
<th>SL-RL (NN)</th>
<th>RL (LSTMs)</th>
<th>RL (NN)</th>
<th>DAgger</th>
<th>SL (LSTMs)</th>
<th>SL (NN)</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>0.924±0.10</td>
<td>0.851±0.10</td>
<td>0.826±0.09</td>
<td>0.386±0.1</td>
<td>0.256±0.07</td>
<td>0.227±0.06</td>
<td>0.832±0.02</td>
<td>0.813±0.1</td>
<td>0.325±0.2</td>
<td>~0.150</td>
</tr>
<tr>
<td>Natural</td>
<td>0.915±0.10</td>
<td>0.800±0.10</td>
<td>0.824±0.10</td>
<td>0.345±0.1</td>
<td>0.237±0.07</td>
<td>0.241±0.07</td>
<td>0.832±0.02</td>
<td>0.813±0.1</td>
<td>0.325±0.2</td>
<td>~0.150</td>
</tr>
</tbody>
</table>

Table 1. Performance (UAS) of different approaches on handwritten algebra dependency parsing. **SL** stands for supervised learning using expert’s samples: maximizing the likelihood of expert’s actions under the sequences generated by expert itself. **SL-RL** means RL with initialization using SL. **Random** stands for the initial performances of random policies (LSTMs and NN). The performance of DAgger with Kernel SVM is from (Duyck & Gordon, 2015).