Deep Reinforcement Learning Lecture

Hado van Hasselt

DeepMind

Presenter: Jack Lanchantin
1. Introduction

2. Deep Q Learning
 - Q-learning
 - Deep Q Learning

3. Policy Gradients
Outline

1 Introduction

2 Deep Q Learning
 - Q-learning
 - Deep Q Learning

3 Policy Gradients
Reinforcement Learning

- RL provides a general-purpose framework for making decisions
 - RL is about learning to act
 - Each action can alter the state of the world, and can result in reward
 - Goal: optimize future rewards (which may be internal to the agent)

- Used on problems that involve making decisions and/or making predictions about the future
Approaches to reinforcement learning

- The goal is to learn a policy of behaviour
- (At least) three possibilities:
 - Learn policy directly
 - Learn values of each action - infer policy by inspection
 - Learn a model - infer policy by planning
- Agents therefore typically have at least one of these components:
 - Policy - maps current state to action
 - Value function - prediction of value for each state and action
 - Model - agents representation of the environment.
A policy is the agent’s behaviour.

It is a map from state to action:

- Deterministic policy: $a = \pi(s)$
- Stochastic policy: $\pi(a|s) = P[a|s]$
A value function is a prediction of future reward
- “How much reward will I get from action a in state s?”

Q-value function gives expected total reward
- from state s and action a
- under policy π
- with discount factor γ

$$Q^\pi(s, a) = \mathbb{E} \left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots \mid s, a \right]$$

Value functions decompose into a Bellman equation

$$Q^\pi(s, a) = \mathbb{E}_{s', a'} \left[r + \gamma Q^\pi(s', a') \mid s, a \right]$$
An optimal value function is the maximum achievable value

\[Q^*(s, a) = \max_{\pi} Q^\pi(s, a) = Q^{\pi^*}(s, a) \]

Once we have \(Q^* \) we can act optimally,

\[\pi^*(s) = \arg\max_a Q^*(s, a) \]

Optimal value maximises over all decisions. Informally:

\[Q^*(s, a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + \ldots \]

\[= r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1}) \]

Formally, optimal values decompose into a Bellman equation

\[Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q^*(s', a') \mid s, a \right] \]
Reinforcement learning Components

- Policy: $\pi(s) = a$
- Value: $Q(s, a) \approx \mathbb{E}[R_{t+1} + R_{t+1} + \ldots | S_t = s, A_t = a]$
- Model: $m(s, a) \approx \mathbb{E}[S_{t+1} | S_t = s, A_t = a]$

→ We need to represent and learn these functions
Approaches to RL

Value-based RL

- Estimate the optimal value function $Q^*(s, a)$
- This is the maximum value achievable under any policy

Policy-based RL

- Search directly for the optimal policy π^*
- This is the policy achieving maximum future reward

Model-based RL

- Build a model of the environment
- Plan (e.g. by lookahead) using model
Deep reinforcement learning

Use deep learning to learn policies, values, and/or models to use in a reinforcement learning domain

- **Reinforcement learning provides**: a framework for making decisions
- **Deep learning provides**: tools to learn the components
Outline

1 Introduction

2 Deep Q Learning
 - Q-learning
 - Deep Q Learning

3 Policy Gradients
Q-learning: A algorithm to learn values

- The optimal value function fulfills:

 \[Q^*(s, a) = \mathbb{E}[R_{t+1} + \max_{a'} Q^*(s', a') | s, a] \]

 i.e. the value of the policy that will get you the most reward

- We can turn this into a temporal difference algorithm

 \[Q_{t+1}(S_t, A_t) = Q_t(S_t, A_t) + \alpha (R_{t+1} + \gamma \max_a Q_t(S_{t+1}, a) - Q_t(S_t, A_t)) \]
Q-learning

- By learning off-policy about the policy that is currently greedy, Q-learning can approximate the optimal value function Q^*.
- With Q^* we have an optimal policy: $\pi^*(s) = \arg\max Q^*(s, \cdot)$.
Deep Q Network (Mnih et al., Nature 2015)

- Learns to play video games by simply playing and observing rewards
- Can learn the Q function by Q-learning

$$\Delta w = \alpha \left(R_{t+1} + \gamma \max_a Q(S_{t+1}, a; w) - Q(S_t, A_t; w) \right) \nabla_w Q(S_t, A_t; w)$$
Target Networks

- Changing the value of one action will change the value of other actions and similar states
- The network can end up chasing its own tail because of bootstrapping
- **Solution**: freeze the weights in the target network for K number of update steps

$$\Delta w = \alpha \left(R_{t+1} + \gamma \max_a Q(S_{t+1}, a; w^-) - Q(S_t, A_t; w) \right) \nabla_w Q(S_t, A_t; w)$$
Experience Replay

- Replay previous tuples \((s, a, r, s')\) which the agent has seen before

Benefits:
- More data efficient
- Learning resembles supervised learning more (which deep learning works well on)

- Replay can be sampled in specific ways, e.g. replay transitions in proportion to absolute Bellman error:

\[
|r + \gamma \max_{a'} Q(S', a', w) - Q(s, a, w)|
\]

(3)
Double DQN (van Hasselt et al. 2015)

DQN:

\[\Delta w = \alpha (r_{t+1} + \gamma \max_{a'} Q(s', a'; w^-) - Q_t(s, a; w)) \nabla_w Q(s, a; w) \]
\[= \alpha (r_{t+1} + \gamma Q(s', \argmax_{a'} Q(s', a'; w^-); w^-) - Q_t(s, a; w)) \nabla_w Q(s, a; w) \]

Double DQN:

\[\Delta w = \alpha (r_{t+1} + \gamma Q(s', \argmax_{a'} Q(s', a'; w); w^-) - Q_t(s, a; w)) \nabla_w Q(s, a; w) \]

Main Idea: decorrelate selection and evaluation to mitigate overestimation
1. Introduction

2. Deep Q Learning
 - Q-learning
 - Deep Q Learning

3. Policy Gradients
Policy Gradient

- We can often do better if the policy is differentiable (optimize the performance with SGD).
 - Represent policy by deep network with weights θ: $a = \pi(a|s, \theta)$
 - Adjust policy parameters θ to achieve more reward
- Goal: compute gradient of the following objective:
 \[
 \nabla_\theta J(\theta) = \nabla_\theta \mathbb{E}[r_1 + \gamma r_2 + \gamma^2 r_3 + ... | \pi(\cdot, \theta)]
 \]
 \[(4) \]
- Problem: rewards aren’t differentiable \rightarrow estimate the gradient
Policy Gradient Theorem

For all differentiable policies (where expectation is over all states and actions):

$$\nabla_\theta J(\theta) = \mathbb{E}[\nabla_\theta \log \pi_{\theta_t}(a|s)Q^\pi(s, a)]$$ \hspace{1cm} (5)

there is an easy sample-based approximation (REINFORCE):

$$\nabla_\theta \log \pi_{\theta_t}(a_t|s_t)G_t$$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots$$

Update parameters:

$$\theta_{t+1} = \theta_t + \alpha R_{t+1} \nabla_\theta \log \pi_{\theta_t}(a_t|s_t)G_t$$ \hspace{1cm} (6)
How can policy-based methods be implemented efficiently with neural networks?

DQN uses replay, but standard PG methods are on-policy

- Good off-policy PG methods have since been developed: ACER (Wang et al., 2016) and PGQL (ODonoghue et al., 2016)
- Idea: sample from replay, but adapt the updates so that expected gradient looks as if we use the current policy
Conclusion

- **RL:** general framework for learning how to act in an environment
- **DL:** tool to learn the policy of how to act (either through value or policy iteration)